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Abstract

We study a Large-Dimensional Non-Stationary Dynamic Factor Model where (1) the
factors Ft are I(1) and singular, that is Ft has dimension r and is driven by q
dynamic shocks with q < r, (2) the idiosyncratic components are either I(0) or I(1).
Under these assumption the factors Ft are cointegrated and modeled by a singular
Error Correction Model. We provide conditions for consistent estimation, as both
the cross-sectional size n, and the time dimension T , go to infinity, of the factors,
the loadings, the shocks, the ECM coefficients and therefore the Impulse Response
Functions. Finally, the numerical properties of our estimator are explored by means
of a MonteCarlo exercise and of a real-data application, in which we study the effects
of monetary policy and supply shocks on the US economy.

JEL subject classification: C0, C01, E0.

Key words and phrases: Dynamic Factor models, unit root processes, cointegration,
common trends, impulse response functions.

1m.barigozzi@lse.ac.uk – London School of Economics and Political Science, UK.
2marco.lippi@eief.it – Einaudi Institute for Economics and Finance, Roma, Italy.
3matteo.luciani@frb.gov – Federal Reserve Board of Governors, Washington DC, USA.

Special thanks go to Paolo Paruolo and Lorenzo Trapani for helpful comments. This paper has benefited
also from discussions with Antonio Conti, Domenico Giannone, Dietmar Bauer, and all participants to
the 39th Annual NBER Summer Institute. This paper was written while Matteo Luciani was chargé de
recherches F.R.S.-F.N.R.S., and he gratefully acknowledges their financial support. Of course, any errors
are our responsibility.

Disclaimer: the views expressed in this paper are those of the authors and do not necessarily reflect those
of the Board of Governors or the Federal Reserve System.



1 Introduction

Since the early 2000s Large-Dimensional Dynamic Factor Models (DFM) have become in-
creasingly popular in the econometric and macroeconomic literature and they are nowadays
commonly used by policy institutions. Economists have been attracted by these models
because they allow to analyze large panels of time series without suffering of the curse
of dimensionality. Furthermore, these models proved successful in forecasting (Stock and
Watson, 2002a,b; Forni et al., 2005; Giannone et al., 2008; Luciani, 2014), in the con-
struction of both business cycle indicators and inflation indexes (Cristadoro et al., 2005;
Altissimo et al., 2010), and also in policy analysis based on impulse response functions
(Giannone et al., 2005; Stock and Watson, 2005; Forni et al., 2009; Forni and Gambetti,
2010; Barigozzi et al., 2014; Luciani, 2015), thus becoming a standard econometric tool in
empirical macroeconomic analysis.

DFMs are based on the idea that all the variables in an economic system are driven
by a few common (macroeconomic) shocks, with their residual dynamics being explained
by idiosyncratic components, such as measurement errors and sectorial or regional shocks.
Formally, each variable in the n-dimensional dataset xit, i = 1, 2, . . . , n, can be decom-
posed into the sum of two unobservable components: the common component χit, and the
idiosyncratic component ξit (Forni et al., 2000; Forni and Lippi, 2001; Stock and Watson,
2002a,b). Moreover, the common components are linear combinations of an r-dimensional
vector of common factors Ft = (F1t F2t · · · Frt)′,

xit = χit + ξit,

χit = λi1F1t + λi2F2t + · · ·+ λirFrt = λ′iFt,
(1)

where λi = (λi1 λi2 · · · λir)′. The stochastic vector Ft is in its turn dynamically driven
by a q-dimensional orthonormal white-noise vector ut = (u1t u2t · · · uqt)′, the common
shocks:

Ft = B(L)ut, (2)

where B(L) is an r × q square-summable matrix in the lag operator (Stock and Watson,
2005; Bai and Ng, 2007; Forni et al., 2009). The dimension n of the dataset is assumed to
be large as compared to r and q, which are independent of n, with q ≤ r. More precisely, all
assumptions and results are formulated assuming that both T , the number of observations
for each xit, and n, the number of variables, tend to infinity.

In the standard version of the DFM, the components χit and ξit, and therefore the
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observable variables xit, are assumed to be stationary. Under the stationarity assumption,
the factors Ft, and the loadings λi, can be consistently estimated by means of the first r
principal components of the observable variables xit (Stock and Watson, 2002a; Bai and
Ng, 2002). Estimation of the matrix B(L) is usually obtained by means of a VAR for
the estimated factors Ft, this providing an estimate of the reduced-form, not identified,
impulse-response functions (IRF) of the variables xit with respect to the common shocks
ut, that is λ′iB(L). Lastly, as shown in Stock and Watson (2005) and Forni et al. (2009),
the identification techniques used in Structural VAR analysis (SVAR) can be applied to
obtain shocks and IRFs fulfilling restrictions based on macroeconomic theory.

Of course the stationarity assumption does not hold for most of the variables contained
in macroeconomic datasets. Assume for simplicity that all the variables xit and the factors
are I(1). Equations (1) do not change, while the MA representation (2) becomes:

∆Ft = C(L)ut. (3)

In this case, the common practice in the applied DFM literature consists in taking first
differences of the non-stationary variables, so obtaining a stationary dataset ∆xit with
stationary factors ∆Ft, and then applying the procedure described above to ∆xit and
∆Ft. This transformation is harmless as far as Ft and λi is concerned, as the first r
principal components of the variables ∆xit consistently estimate ∆Ft and therefore, by
integration, Ft, up to initial conditions (Bai and Ng, 2004). However, important issues
arising in connection with estimation of the IRFs in the non-stationary case have not been
systematically analysed so far. In particular, estimation of C(L) by means of a VAR is not
trivial.

Firstly, if the factors Ft are cointegrated, consistent estimation of the long-run features
of the IRFs requires modeling Ft as a Vector Error Correction Model (VECM). The few
papers considering estimation of the IRFs in the non-stationary case model instead the
dynamics of Ft as a VAR in differences (Stock and Watson, 2005; Forni et al., 2009).

Secondly, irrespective of whether the dataset is stationary or not, as a rule the vector
Ft is singular, i.e. the number r of static common factors is greater than the number
q of common shocks. This finding is strongly supported by empirical evidence, see e.g.
Giannone et al. (2005), Amengual and Watson (2007), Forni and Gambetti (2010), Luciani
(2015) for US macroeconomic databases, Barigozzi et al. (2014) for the Euro area.

The contribution of the present paper is the asymptotic analysis (consistency and rates)
of estimators of IRFs for Non-Stationary Dynamic Factor Models for large datasets under
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the assumptions that:
(I) the factors Ft are I(1), singular and cointegrated (singular I(1) vectors are trivially

cointegrated, see below);
(II) the idiosyncratic components ξit are I(1) or I(0).
As regards (I), singularity of the vector Ft is consistent with a point made in several

papers, see e.g. Stock and Watson (2005), Forni et al. (2009), that (1) and (2) are just a
convenient static representation derived from a “deeper” set of dynamic equations linking
the common components χit to the common shocks ut. For example, assuming for sim-
plicity stationarity, suppose that q = 1 and that the common components load the single
shock ut with the simple MA dynamics

χit = µi0ut + µi1ut−1.

Representation (1) is obtained by setting r = 2, F1t = ut, F2t = ut−1, λi = (µi0 µi1)′, while
(2) takes the form

Ft =

(
ut

ut−1

)
=

(
1

L

)
ut,

so that B(L) = (1 L)′. This elementary model helps understanding the assumption of
singularity for Ft, but also helps to point out that Ft has not an autonomous economic
content. Estimation of Ft and of B(L), or C(L), are used to obtain the dynamic response of
xit to the common shocks ut. In particular, the factors Ft are identified only up to a linear
transformation and replacing Ft with H−1Ft, H being an invertible matrix, obviously
requires replacing λi with H′λi and fairly obvious transformations of B(L), or C(L).
However, it is easily seen that application of identification restrictions based on economic
logic, such as recursive schemes or long-run effects, only applies to the shocks ut, which
implies that the identified IRF are independent of H, so that in this sense the factors Ft

are just playing an auxiliary role, see Remark 2 in Section 2.
Second, in the companion paper Barigozzi et al. (2016) we address the representation

problems for singular cointegrated vectors. Denoting by c the cointegration rank of Ft, c
is at least r − q, that is c = r − q + d with 0 ≤ d < q, hence singular I(1) vectors are
always cointegrated. Moreover, under the assumption that the entries of C(L) are rational
functions of L, Ft has a representation as a VECM:

G(L)∆Ft +αβ′Ft−1 = h + Kut, (4)
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where α and β are both r× c and full rank, K is r× q and G(L) is a finite-degree matrix
polynomial. Trivially, representation (4) implies the existence of q − d common trends for
Ft. In the present paper we study estimation of the DFM and the IRFs for non-stationary
data when (4) holds. Specifically, we consider the case in which (4) is estimated as a VECM
or by means of an unrestricted VAR in levels.

As regards (II), with the exception of Bai and Ng (2004), DFMs for I(1) variables are
studied under the assumption of stationary idiosyncratic components, see e.g. Bai (2004)
and Peña and Poncela (2006) (which is however a model with fixed n). This is a crucial
assumption with non-trivial consequences on the model. First, I(0) idiosyncratic compo-
nents imply that the x’s and the factors are cointegrated. This property is exploited in
Banerjee et al. (2017), who assume I(0) idiosyncratic components and study a Factor Aug-
mented Error Correction Model. However, not only the assumption of I(0) idiosyncratic
components is empirically not supported by typical macroeconomic datasets, as the one
analyzed in this paper, but also, as we argue in Section 2, I(0) idiosyncratic components
imply “too much cointegration” among the variables xit themselves.

Second, under the assumption of I(0) idiosyncratic components, it is possible to sep-
arately estimate I(1) non-cointegrated factors and I(0) factors, see Bai (2004). As a
consequence, representation (4) becomes trivial, the I(0) factors being the errors terms.
On the other hand, if the idiosyncratic terms are either I(0) or I(1), as we assume in the
present paper, the estimated factors are all I(1) in general, and estimation of (4) is not
trivial.

The paper is organized as follows. In Section 2 we summarize and discuss the represen-
tation results proved in the companion paper Barigozzi et al. (2016). Moreover, we state
the main assumptions of the model. Section 3 establishes consistency and rates for our
estimators. In Section 4 we propose an information criterion for determining the number
of common trends in a DFM. In Section 5, by means of a Monte Carlo simulation exercise,
we study the finite sample properties of our estimators. Finally, in Section 6 we use our
model to study the impact of monetary policy and supply shocks for the US economy. In
Section 7 we conclude and discuss possible further applications of the model presented. The
proofs of our main results and auxiliary lemmas are in Appendix A.
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2 The Non-Stationary Dynamic Factor model

2.1 I(1) vectors and cointegration

Throughout the paper we will adopt the following definitions for I(0), I(1) and cointegrated
stochastic vectors. They are standard (see Johansen, 1995, Ch. 3), except that here the
vectors can be singular, i.e. they can be driven by a number of shocks q and be of dimension
r, with r > q.

(I) Consider an r×q matrix A(L) = A0+A1L+· · · , with the assumption that the series∑∞
j=0 Ajz

j converges for all complex number z such that |z| < 1 + δ for some δ > 0.
This condition is fulfilled when the entries of A(L) are rational functions of L with
no poles inside or on the unit circle (the VARMA case). Given the r-dimensional
stationary stochastic vector

yt = A(L)vt,

where vt is a q-dimensional white noise, q ≤ r, we say that yt is I(0) if A(1) 6= 0.

(II) The r dimensional stochastic vector yt is I(1) if ∆yt is I(0).

(III) The r-dimensional I(1) vector yt is cointegrated of order c, 0 < c < r, if (1) there
exist linearly independent r-dimensional vectors βk, k = 1, 2, . . . , c, such that β′kyt is
stationary, (2) if γ ′yt is stationary then γ is a linear combination of the vectors βk.

Some important properties for our model follow from these definitions.

Remark 1

(a) Some of the coordinates of an I(1) vector can be stationary.

(b) If one of the coordinates of the I(1) vector yt is stationary, then yt is cointegrated.

(c) The cointegration rank of yt is equal to r minus the rank of A(1).

(d) It easy to see that yt is cointegrated with cointegration rank c if and only if yt can
be linearly transformed into a vector whose first c coordinates are stationary and the
remaining r − c are I(1). For, let yt be cointegrated of order c with cointegration
vectors βk, k = 1, 2, . . . , c. Let β = (β1 β2 · · · βc) and B = (β β⊥), where β⊥ is
an r× (r− c) matrix whose columns are linearly independent and orthogonal to the
columns of β. Then, the first c coordinates of zt = B′yt are stationary while the
remaining r − c are I(1).
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(e) As is well known, in model (1) the factors Ft are identified up to a linear transfor-
mation, see Remark 2 for details. Thus, in view of (d), the question whether some of
the factors are stationary while the remaining ones are I(1) is perfectly equivalent to
the question whether and “how much” the factors are cointegrated, see Bai (2004).

(f) Note that if yt is I(1) and r > q, then obviously yt is cointegrated with cointegration
rank at least r − q:

c = (r − q) + d, 0 ≤ d < q. (5)

2.2 Assumptions on common and idiosyncratic components

Under the assumption that Ft is I(1), defining

xt = (x1t x2t · · · xnt)′, χt = (χ1t χ2t · · · χnt)′, ξt = (ξ1t ξ2t · · · ξnt)′, Λ = (λ1 λ2 · · · λn)′,

equations (1)–(3) become:
xt = χt + ξt = ΛFt + ξt

∆Ft = C(L)ut.
(6)

Firstly, we suppose that the I(1) stochastic vector Ft has an ARIMA representation:

S(L)∆Ft = Q(L)ut, (7)

or

∆Ft = C(L)ut = S(L)−1Q(L)ut, (8)

where:
(i) ut is a q-dimensional white noise, rk(E [utu

′
t]) = q;

(ii) S(L) is an r × r finite-degree matrix polynomial with no zeros inside or on the unit
circle;
(iii) S(0) = Ir;
(iv) Q(L) is a finite-degree r × q matrix polynomial, Q(1) 6= 0;
(v) rk(Q(0)) = q.

Setting d = q− rk(Q(1)), the cointegration rank of Ft is c = r− rk(Q(1)) = (r− q) +d.
It is easy to show, see Barigozzi et al. (2016), that there exists a non-singular q× q matrix
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R such that, defining

vt =

(
v1t

v2t

)
= Rut,

where v1t has dimension d while v2t has dimension r− c = q − d, the d shocks in v1t have
a temporary effect on Ft whereas the q − d shocks in v2t have a permanent effect. Thus
the number of permanent shocks is r minus the cointegration rank, as in the non-singular
case, while the number of transitory shocks is the complement to q, not r, as though
r − q transitory shocks had a zero coefficient. In applications to macroeconomic datasets
permanent and transitory shocks can be interpreted as the usual supply and demand causes
of fluctuation of the GDP and other key variables. In Sections 5 and 6 permanent and
transitory effects on some of the variables xit are used to identify structural IRFs.

The main result in Barigozzi et al. (2016), which is crucial for the present paper, is the
following. Assume equation (7) for Ft, suppose that c = (r−q)+d and set β = (β1 · · · βc).
Then, for generic values of the parameters in the matrices S(L) and Q(L), Ft has the
VECM representation:

G(L)∆Ft +αβ′Ft−1 = h + Kut, (9)

where:
(A) α and β are full rank r × c matrices;
(B) K = Q(0);
(C) h is a constant vector;
(D) G(L) is a finite-degree matrix polynomial with G(0) = Ir.

This VECM representation is obtained by combining the Granger Representation Theo-
rem with recent results on singular stochastic vectors, see Anderson and Deistler (2008a,b).
The existence of a finite-degree inverse of Q(L), see (D) above, is a consequence of sin-
gularity. Note that the VECM, fulfilling (A) through (D), holds generically, that is with
the exception of a subset of lower dimension—thus except for a negligible subset—in the
parameter space (details in Barigozzi et al., 2016). We use this result as a motivation for
assuming that (9) holds.

In particular, we make the following assumptions on the factors, loadings and idiosyn-
cratic components.

Assumption 1 (Common factors)
(a) The I(1) r-dimensional stochastic vector Ft, with cointegration rank c = r− q+ d, has
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an ARIMA representation
S(L)∆Ft = Q(L)ut,

fulfilling properties (i) through (v), and a VECM representation

G(L)∆Ft = h +αβ′Ft−1 + Kut,

fulfilling properties (A) through (D).

(b) rk(E[∆Ft∆F′t]) = rk(
∑∞

k=0 CkC
′
k) = r.

Part (a) of the next assumption implies that the r factors are not redundant, i.e. no
representation with a number of factors smaller than r is possible.

Assumption 2 (Loadings)
(a) There exists an r × r positive definite matrix V such that, as n→∞,

n−1Λ′Λ→ V.

(b) Denoting by λij the (i, j) element of Λ, |λij| < C for some positive real C independent
of i and j.

The idiosyncratic components are driven by idiosyncratic shocks with univariate dy-
namics and are orthogonal to the common components at any lead and lag:

Assumption 3 (Idiosyncratic components)

(1− ρiL)ξit = di(L)εit, (10)

where
(a) εt = (ε1t ε2t · · · εnt)′ is a vector white noise;
(b) di(L) =

∑∞
k=0 dik, with

∑∞
k=0 k|dik| ≤M1, for some positive real M1 independent of i;

(c) |ρi| ≤ 1, so that I(1) idiosyncratic components are allowed;
(d) ujt and εis are orthogonal for any j = 1, 2, . . . , q, i ∈ N, and t, s ∈ Z.

Condition (b) implies square summability of the matrix polynomials in (10) so that ξit
is non-stationary if and only if ρi = 1. Assuming that |ρi| < 1, that is all idiosyncratic
components are stationary, implies that any p-dimensional vector (xi1,t xi2,t · · · xip,t), with
p ≥ q − d + 1, would be cointegrated. For, as we have seen above, the factors Ft are
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driven by r − c = q − d permanent shocks and the same holds for the variables xih,t if
the idiosyncratic components are stationary. For example, if q = 3 and d = 0 then all 4-
dimensional subvectors of xt are cointegrated (3-dimensional if d = 1). Moreover, applying
the test proposed in Bai and Ng (2004) on a panel of 101 quarterly US macroeconomic
time series (see Section 6 and Appendix B), one of the datasets typically analysed in the
empirical DFM literature, we found that the I(0) hypothesis is rejected for half of the
estimated idiosyncratic components.

Finally, note that contemporaneous cross-sectional dependence of the white noise εt is
not excluded. More on this in Assumption 4.

To prove our consistency results we need enhancing Assumptions 1 and 3, in which we
only require that ut and the shocks εit are white noise, orthogonal at any lead and lag.

Assumption 4 (Common and idiosyncratic shocks)
(a) ut is a strong orthonormal white noise, i.e. E[utu

′
t] = Iq, ut and ut−k are independent

for any k 6= 0;
(b) E[u4

jt] ≤M2, for any j = 1, 2, . . . , q and a positive real M2;
(c) εt = (ε1t ε2t · · · εnt)′ is a strong vector white noise;
(d) E[|εit|κ1|εjt|κ2 ] ≤M3 for any κ1 + κ2 = 4, i, j ∈ N and a positive real M3;
(e) maxj=1,2,...,n

∑n
i=1 |E[εitεjt]| ≤M4 for any n ∈ N and a positive real M4;

(f) ujt and εis are independent for any j = 1, 2, . . . , q, i ∈ N, and t, s ∈ Z.

As noted above, contemporaneous cross-sectional dependence of the white noise εt is
allowed. In particular, with condition (e) we require a mild form of sparsity as proposed
by Fan et al. (2013) and found empirically in a stationary setting by Boivin and Ng (2006),
Bai and Ng (2008), and Luciani (2014). The components of ∆ξt are allowed to be both
cross-sectionally and serially correlated. Condition (f) is in agreement with the economic
interpretation of the model, in which common and idiosyncratic shocks are two independent
sources of variation.

Lemmas 1 and 2 provide basic results for the eigenvalues of the covariance matrices of
the idiosyncratic shocks εit and the variables ∆xit, ∆χit, ∆ξit.

Lemma 1 Under Assumptions 1 through 4, there exists a positive real M5 such that µε1 ≤
M5 and n−1

∑n
i=1

∑n
j=1 |E[εitεjt]| ≤M5 for any n ∈ N.

Lemma 2 Under Assumptions 1 through 4, for any n ∈ N, there exist positive reals M6,
M6, M7, M8, M8 and an integer n̄ such that
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(i) M6 ≤ n−1µ∆χ
j ≤M6 for any j = 1, 2, . . . , r and n > n̄;

(ii) µ∆ξ
1 ≤M7;

(iii) M8 ≤ n−1µ∆x
j ≤M8 for any j = 1, 2, . . . , r and n > n̄;

(iv) µ∆x
r+1 ≤M7.

The results in Lemma 2 are crucial to estimate the number of factors r, the loadings,
the differenced factors and the factors themselves. Analogous results on the eigenvalues of
the spectral density matrices of the x’s, the χ’s and the ξ’s, allow the estimation of q and
the cointegration rank c of the factors Ft, see Section 4.

Remark 2 In model (6) the factors Ft are not identified. For, given the non singular r×r
matrix H,

xt = [ΛH]
[
H−1Ft

]
+ ξt = Λ∗F∗t + ξt. (11)

Using F∗t implies changes in the matrices in (8) and (9) and the loadings that are easy to
compute:

Λ∗ = ΛH, S∗(L) = H−1S(L)H, Q∗(L) = H−1Q(L), C∗(L) = H−1C(L),

G∗(L) = H−1G(L)H, α∗ = H−1α, β∗ = Hβ, K∗ = H−1K.

Note that Λ∗C∗(L) = ΛC(L), so that the raw IRFs of the x’s with respect to ut, corre-
sponding to the factors F∗t and to the factors Ft are equal. As a consequence, identification
of the IRFs based on any economic criterion is independent of the particular factors used.

The following choice of the factors is very convenient and will be adopted in the se-
quel. Let W be the n × r matrix whose columns are the right normalised eigenvectors
of the variance-covariance matrix of ∆χt, corresponding to the first r eigenvalues µ∆χ

j ,
j = 1, 2, . . . , r. Define

∆F∗t = W′∆χt.

Now project ∆χt on ∆F∗t :
∆χt = A∆F∗t +Rt.

We see that A = W and that the variance-covariance matrices of ∆χt and of W∆F∗t are
equal, so that Rt = 0 and the projection becomes ∆χt = WW′∆χt, that is

(In −WW′) ∆χt = 0.
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Setting χ0 = 0 we obtain χt = W [W′χt], for t > 0, or, in our preferred specification,

χt =
[√
nW

] [ 1√
n

W′χt

]
. (12)

We do not need to complicate the notation by introducing new symbols and set henceforth

Λ =
√
nW, Ft =

1√
n

W′χt =
1

n
Λχt. (13)

Note that now the factors Ft and the loadings λi, for a given i, depend on n and that in
the new specification:

1

n
Λ′Λ = Ir, (14)

for all n ∈ N. Moreover, the variance-covariance matrix of the differenced factors ∆Ft is
the diagonal r × r matrix with µ∆χ

j /n as the (j, j) entry. By Lemma 2, (i), which is a
consequence of Assumption 1, (b) and 2, all such entries are bounded and bounded away
from zero.

We conclude with the following assumption, which has the consequence that χ0 = 0,
ξ0 = 0 and x0 = 0.

Assumption 5 For all i ∈ N and t ≤ 0, ut = 0 and εit = 0.

3 Estimation

We proceed in the same way as Stock and Watson (2005) and Forni et al. (2009) do in
their stationary setting: (i) we estimate the loadings, the common factors, their VECM
dynamics and the raw IRFs, (ii) we identify the structural common shocks and IRFs by
imposing a set of restrictions based on economic logic.

We observe an n-dimensional vector xt over the period 0, 1, . . . , T , i.e. the n× (T + 1)

panel x = (x0 · · ·xT ). Asymptotics for all our estimators is studied for both n and T

tending to infinity. The number of common factors r, of common shocks q, and of the
cointegration relations c = r − q + d is assumed to be known in the present section, their
estimation is studied in Section 4.

We denote estimated quantities with a hat, like in F̂t, without explicit notation for their
dependence on both n and T . Moreover, (1) the spectral norm of a matrix B is denoted
by ‖B‖ = (µB′B

1 )1/2, where µB′B
1 is the largest eigenvalue of B′B, (2) we denote by J a

diagonal r × r matrix, depending on n and T , whose diagonal entries are either 1 or −1.
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3.1 Loadings and common factors

We start with the model in differences,

∆xt = Λ∆Ft + ∆ξt.

Consider the n× T data matrix ∆x = (∆x1 · · ·∆xT ). Let Γ̂0 = T−1∆x∆x′ be the sample
covariance matrix of ∆xt and Ŵ the n× r matrix with the normalized eigenvectors of Γ̂0,
corresponding to the first r eigenvalues, on the columns. The standard estimators of the
loadings and the differenced factors are

Λ̂ =
√
nŴ, ∆F̂t =

1√
n

Ŵ′∆xt =
1

n
Λ̂′∆xt.

Integrating F̂t under the condition x0 = 0,

Λ̂ =
√
nŴ, F̂t =

1√
n

Ŵ′xt =
1

n
Λ̂′xt. (15)

Lemma 3 Under Assumptions 1 through 5, as n, T →∞,
(i) Given i, ‖λ̂′i − λ′iJ‖ = Op(max(n−1/2, T−1/2));

(ii) Given t, ‖∆F̂t − J∆Ft‖ = Op(max(n−1/2, T−1/2));

(iii) Given t, T−1/2‖F̂t − JFt‖ = Op(max(n−1/2, T−1/2)).

Our proof of statements (i) and (ii) is close to the one given in Forni et al. (2009).
However, they make direct assumptions on the estimate of the covariance matrix of the
x’s, whereas we start with “deeper” assumptions on common and idiosyncratic compo-
nents. Moreover, we do not need assuming that the eigenvalues µ∆χj , j = 1, 2, . . . , r, are
asymptotically separated. Bai and Ng (2004) define their estimators as in (15) and prove
statement (iii). In this respect, their paper and the present one only differ for the technique
used in the proof. A significant difference, concerning detrending, which is needed when
the actual data x contain a deterministic component, is discussed in Section 3.5.

Lemma 3, though interesting per se, is not sufficient to prove our main result on the
VECM representation of Ft and the IRFs. In particular, we need the asymptotic properties
of the sample second moments of F̂t and ∆F̂t. The main results, proved in Appendix A,
Lemma A5, are worth mentioning here. As n, T →∞,

(I) ‖T−1
∑T

t=1 ∆F̂t∆F̂′t − E[∆Ft∆F′t]‖ = Op(max(n−1/2, T−1/2));
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(II) T−2
∑T

t=1 F̂tF̂
′
t
d→
∫ 1

0
W(τ)W′(τ)dτ , where W(·) is an r-dimensional Brownian mo-

tion with finite covariance matrix of rank q − d.

3.2 VECM for the common factors

We now turn to estimation of the VECM in (9), with c = r− q+ d cointegration relations,
see Assumption 1:

∆Ft = αβ′Ft−1 + G1∆Ft−1 + wt, wt = Kut. (16)

For simplicity, we assume that the degree of G(L) is p = 1. Generalization to any degree,
p > 1, is straightforward. As a consequence of Assumption 5 we set h = 0.

Different estimators for the cointegration vector, β, are possible. As suggested by the
asymptotic and numerical studies in Phillips (1991) and Gonzalo (1994), we opt for the
estimation approach proposed by Johansen (1991, 1995). Although typically derived from
the maximization of a Gaussian likelihood, this estimator is nothing else but the solution of
an eigen-problem naturally associated to a reduced rank regression model, where no specific
assumption about the distribution of the errors is made in order to establish consistency
(see e.g. Velu et al., 1986).1

Since Ft are unobserved, we estimate the parameters of (16) by using the estimated
factors F̂t instead. Denote as ê0t and ê1t the residuals of the least square regressions of ∆F̂t

and of F̂t−1 on ∆F̂t−1, respectively, and define the matrices Ŝij = T−1
∑T

t=1 êitê
′
jt. Then,

the c cointegration vectors are estimated as the normalized eigenvectors corresponding to
the c largest eigenvalues µ̂j, such that, for j = 1, 2, . . . c,

(Ŝ11 − Ŝ10Ŝ
−1
00 Ŝ01)β̂j = µ̂jβ̂j.

The vectors β̂j are then the c columns of the estimated matrix β̂. The other parameters
of the VECM, α and G1, are estimated in a second step as the least square estimators in
the regressions of ∆F̂t on β̂′F̂t−1 and on ∆F̂t−1, respectively.

Finally, a linear combination of the q columns of K can be estimated as the first q
eigenvectors of the sample covariance matrix of the VECM residuals ŵt, rescaled by the

1Other existing estimators of the cointegration vector, not considered here, are, for example: ordinary
least squares (Engle and Granger, 1987), non-linear least squares (Stock, 1987), principal components
(Stock and Watson, 1988), instrumental variables (Phillips and Hansen, 1990), and dynamic ordinary least
squares (Stock and Watson, 1993).
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square root of their corresponding eigenvalues (see Stock and Watson, 2005; Bai and Ng,
2007; Forni et al., 2009, for analogous definitions). This estimator is denoted as K̂.

Consistent estimation of (16) in presence of estimated factors, is possible under the
following additional assumption.

Assumption 6
(a) Let n1 be the number of I(1) variables among ξ1t, ξ2t, . . . , ξnt (i.e. the number of

idiosyncratic components ξit such that ρi = 1, see Assumption 3). Then n1 = O(nδ)

for some δ ∈ [0, 1);
(b) Tn−(2−δ) → 0, as n, T →∞;
(c) let I0 and I1 be the sets {i ≤ n, such that ξit is I(0)} and {i ≤ n, such that ξit is I(1)}

respectively. Then:
n−γ

∑
i∈I0

∑
j∈I1

|E[εitεjt]| ≤M9

for some γ < δ, som positive real M9 and any n ∈ N.

Under condition (a), we put an asymptotic limit to the number of I(1) idiosyncratic
components. Their number n1 can grow to infinity but slower than the number of the
I(0) components. Condition (b) imposes a constraint on the relative growth rates of n
and T and it implies that at least T 1/2/n → 0 (when δ = 0). Further motivations for,
and the implications of, these two requirements are given below. Finally, with reference to
the partitioning of the vector of idiosyncratic components into I(1) and I(0) coordinates,
condition (c) limits the dependence between the two blocks more than the dependence
within each block, which is in turn controlled by Lemma 1.2

We then have consistency of the estimated VECM parameters.

Lemma 4 Define ϑnT,δ = max
(
T 1/2n−(2−δ)/2, n−(1−δ)/2, T−1/2

)
. Under Assumptions 1

through 6, and given J defined in Lemma 3, there exist a c× c orthogonal matrix Q and a
q × q orthogonal matrix R, such that, as n, T →∞,

(i) ‖β̂ − JβQ‖ = Op(T
−1/2ϑnT,δ);

(ii) ‖α̂− JαQ‖ = Op(ϑnT,δ);
(iii) ‖Ĝ1 − JG1J‖ = Op(ϑnT,δ);
(iv) ‖K̂− JKR‖ = Op(ϑnT,δ).

2We could in principle consider any γ < 1, in which case the rate of convergence of Lemma 4 and
Proposition 1 below would depend also on γ. However, since the main message of those results would be
qualitatively unaffected, we impose, for simplicity, γ < δ.
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The rate of convergence in Lemma 4 is determined by ϑnT,δ. In particular, for generic
values of δ ∈ [0, 1) we have

ϑnT,δ =


T 1/2n−(2−δ)/2 if T 1/(2−δ) < n < T,

T−(1−δ)/2 = n−(1−δ)/2 if n = T,

n−(1−δ)/2 if T < n < T 1/(1−δ),

T−1/2 if n > T 1/(1−δ).

(17)

Consistency of the estimated parameters is guaranteed if and only if ϑnT,δ → 0, as n, T →
∞, which is ensured by Assumption 6. The intuitive explanation for Assumption 6 is as
follows: due to non-stationarity the factor estimation error grows with T , but since, as
defined in (15), the estimated factors are cross-sectional averages of the x’s, we can keep
this error under control by allowing for an increasingly large cross-sectional dimension,
n. In particular, the factor estimation error is a weighted average of the idiosyncratic
components, and therefore the trade-off between n and T depends on how many of those
components are non-stationary.

The following remarks provide some more intuition about the results in Lemma 4.

Remark 3 From (17), we see that the classical T 1/2-consistency is achieved if and only if
T 1/(1−δ)/n→ 0, that is when n grows much faster than T . On the other hand, in the case
n = O(T ), which is of particular interest since it corresponds to typical macroeconomic
datasets, the first two rates in ϑnT,δ are equal and we have convergence at a rate T (1−δ)/2,
which for small values of δ is close to the classical T 1/2-rate. Finally, in the case δ = 0, which
is asymptotically equivalent to saying that all idiosyncratic components are stationary, we
need at least T 1/2/n→ 0 and we have the classical T 1/2-consistency if and only if T/n→ 0.

Remark 4 Due to the factor estimation error we do not have in general the classical T -
consistency for the estimated cointegration vector β̂. Still, β̂ converges to the true value,
β, at a faster rate with respect to the rate of consistency of the other VECM parameters.
This is enough to consistently apply the two-step VECM estimation as in Johansen (1995).

Remark 5 The estimated parameters approach the true parameters only up to three
transformations J, Q, and R. First of all, since the estimated factors identify the true ones
only up to a sign, determined by J, the same holds for the estimated VECM parameters
with obvious multiplications by J. As already explained in Remark 2, this issue does not
affect estimation and identification of IRFs. Second, the matrix Q represents the usual
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indeterminacy in the identification of the cointegration relations, but again its identification
does not affect the IRFs. This is also in agreement with the fact that, in our setup, neither
the factors nor their cointegration relations have any economic meaning. Last, the matrix
R represents indeterminacy in the identification of the matrix K, and, as discussed below,
R has to be determined in order to identify the structural IRFs.

3.3 Common shocks and impulse response functions

Throughout the rest of the section we denote the true IRF of xit, for i = 1, 2, . . . n, to the
shock ujt, for j = 1, 2, . . . , q, as (see also (6))

φij(L) = λ′i

[
cj(L)

1− L

]
, (18)

where λ′i is the i-th row of Λ, cj(L) is the j-th column of C(L), and the notation used is
convenient and makes sense, provided that we do not forget that such IRF is not square
summable.

A VECM(p) with cointegration rank c can also be written as a VAR(p+ 1) with r − c
unit roots. Therefore, after estimating (16), we have the estimated matrix polynomial

ÂVECM(L) = Ir −
p+1∑
k=1

ÂVECM
k Lk,

with coefficients given by

ÂVECM
1 = Ĝ1 − α̂β̂′ + Ir,

ÂVECM
k = Ĝk − Ĝk−1, k = 2, 3, . . . , p (19)

ÂVECM
p+1 = −Ĝp.

such that rk(ÂVECM(1)) = rk(α̂β̂′) = c. Then, for i = 1, 2, . . . , n and j = 1, 2, . . . , q, the
raw IRFs estimator is defined as

φ̃VECM
ij (L) = λ̂′i

[
ÂVECM(L)

]−1

k̂j. (20)

where λ̂′i is the i-th row of Λ̂, k̂j is the j-th column of K̂ (see also Lütkepohl, 2006, for an
explicit expression as function of the VECM parameters).
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However, since K is not identified, the IRFs in (20) are in general not identified. Now,
while orthogonality of R in Lemma 4 is a purely mathematical result due to non-uniqueness
of eigenvectors, economic theory tells us that the choice of the identifying transformation
can be determined by the economic meaning attached to the common shocks, ut. We
then need to impose at most q(q − 1)/2 restrictions in order to achieve under- or just-
identification.3 In this case, R is a function of the parameters of the model and it can be
estimated as a function of the estimated parameters: R̂ ≡ R̂(Λ̂, ÂVECM(L), K̂) (see also
Forni et al., 2009, for a discussion). Two examples of restrictions are considered in Section
6 when analyzing real data.

The estimated and identified IRFs are then defined by combining the estimated param-
eters and the identification restrictions. In particular, for i = 1, 2, . . . , n and j = 1, 2, . . . , q,
the dynamic reaction of the i-th variable to the j-th common shock is estimated as

φ̂VECM
ij (L) = λ̂′i

[
ÂVECM(L)

]−1

K̂ r̂j, (21)

where λ̂′i is the i-th row of Λ̂, r̂j is the j-th column of R̂.
By denoting as φ̂VECM

ijk the k-th coefficient of the polynomial in (21), and as φijk the
corresponding coefficients of φij(L), we have the following consistency result.

Proposition 1 (Consistency of Impulse Response Functions based on VECM)
Under Assumptions 1 through 6, as n, T →∞, we have∣∣∣φ̂VECM

ijk − φijk
∣∣∣ = Op(ϑnT,δ), (22)

for any k ≥ 0, i = 1, 2, . . . , n, and j = 1, 2, . . . , q.

The proof of Proposition 1, follows directly by combining Lemma 3(i) and 4. As noticed
above this result is not affected by the fact that common factors and their cointegration
relations are not identified. All previous remarks on convergence rates apply also in this
case.

3In principle any invertible transformation can be considered in order to achieve such identifica-
tion. However, traditional macroeconomic practice assumes Gaussianity of the shocks and therefore re-
stricts to orthogonal matrices only, that is to uncorrelated common shocks.
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3.4 The case of unrestricted VAR for the common factors

In presence of non-singular cointegrated vectors, several papers have addressed the issue
whether and when a VECM or an unrestricted VAR for the levels should be used for
estimation. Sims et al. (1990) show that the parameters of a cointegrated VAR are con-
sistently estimated using an unrestricted VAR in the levels. On the other hand, Phillips
(1998) shows that if the variables are cointegrated, then the long-run features of the IRFs
are consistently estimated only if the unit roots are explicitly taken into account, that is
within a VECM specification (see also Paruolo, 1997). This result is confirmed numerically
in Barigozzi et al. (2016) also for the singular case, r > q.

Nevertheless, since by estimating an unrestricted VAR it is still possible to estimate
consistently short run IRFs without the need of determining the number of unit roots and
therefore without having to estimate the cointegration relations, this approach has become
very popular in empirical research. For this reason, here we also study the properties
of IRFs when, following Sims et al. (1990), we consider least squares estimation of an
unrestricted VAR(p) model for the common factors.4 For simplicity we fix p = 1 and we
replace the VECM model (16) with the VAR

Ft = A1Ft−1 + wt, wt = Kut. (23)

Denote by ÂVAR
1 the least squares estimators of the coefficient matrix, obtained using F̂t,

and by K̂ the estimator of K, which is obtained as in the VECM case but this time starting
from the sample covariance of the VAR residuals. Consistency of these estimators is given
in the following Lemma.

Lemma 5 Under Assumptions 1 through 5, and given J defined in Lemma 3, there exists
a q × q orthogonal matrix R, such that, as n, T →∞,

i. ‖ÂVAR
1 − JA1J‖ = Op(max(n−1/2, T−1/2));

ii. ‖K̂− JKR‖ = Op(max(n−1/2, T−1/2)).

This results can be straightforwardly extended to a generic VAR(p) with coefficients
ÂVAR
k such that

ÂVAR(L) = Ir −
p∑

k=1

ÂVAR
k Lk.

4For alternative approaches, not considered here, see for example the fully modified least squares
estimation by Phillips (1995).
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As before, we can compute an estimator R̂ of the identifying matrix R by imposing ap-
propriate economic restrictions on the non-identified IRFs. Then, for i = 1, 2, . . . , n and
j = 1, 2, . . . , q, the estimated and identified IRF of the i-th variable to the j-th shock is
defined as

φ̂VAR
ij (L) = λ̂′i

[
ÂVAR(L)

]−1

K̂ r̂j, (24)

where λ̂′i is the i-th row of Λ̂, r̂j is the j-th column of R̂. After denoting as φ̂VAR
ijk the k-th

coefficient of the polynomial in (24), and as φijk the corresponding coefficients of φij(L),
we have the following consistency result.

Proposition 2 (Consistency of Impulse Response Functions based on VAR)
Under Assumptions 1 through 5, as n, T →∞, we have∣∣∣φ̂VAR

ijk − φijk
∣∣∣ = Op

(
max

(
n−1/2, T−1/2

))
, (25)

for any finite k ≥ 0, i = 1, 2, . . . , n, and j = 1, 2, . . . , q.

Two last remarks are in order.

Remark 6 For any finite horizon k the impulse response φ̂VAR
ijk is also a consistent estimator

of φijk. This result is consistent with the result for observed variables by Sims et al. (1990).
On the other hand, it is also possible to prove that the same unit roots affect the estimated
long-run IRFs in such a way that their least squares estimator is no longer consistent,
i.e. limk→∞ |φ̂VAR

ijk − φijk| = Op(1) (see Theorem 2.3 in Phillips, 1998). For this reason,
Proposition 2 holds only for finite horizons k.

Remark 7 For any finite k, the estimator φ̂VAR
ijk can converge faster than φ̂VECM

ijk to the
true value φijk. However, as shown in the proof of Lemma 5, the rate of convergence of
the parameters associated to the non-stationary components is slower than what it would
be were the factors observed, that is we do not have super-consistency. This is due to
the factors’ estimation error. Moreover, convergence in Proposition 2 is achieved without
the need of Assumption 6. In particular, consistency holds even when all idiosyncratic
components are I(1) and without requiring any constraint on the relative rates of divergence
of n and T .

Summing up, as a consequence of Propositions 1 and 2, the empirical researcher faces
a trade-off between (i) estimating correctly the whole IRFs with a slower rate and more
restrictive assumptions, as in Proposition 1, or (ii) giving up consistent estimation of the
long-run behavior in exchange for a faster rate of convergence, as in Proposition 2.
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3.5 The case of deterministic trends

We conclude this section considering the case of deterministic components. Assumptions 1
and 3 imply E[∆Ft] = 0 and E[∆ξt] = 0. Because of Assumption 5, we also have E[Ft] = 0

and E[ξt] = 0, which imply that no deterministic components are present in the model
for xt. However, macroeconomic data often have at least a linear trend, in which case the
model for an observed time series, denoted as yit, would read

yit = ai + bit+ λ′iFt + ξit, (26)

where xit = λ′iFt+ξit follows the Non-Stationary DFM described by Assumptions 1 through
5. Notice that we also allow for non-zero initial conditions (ai 6= 0), this posing no difficulty
in terms of estimation.

The IRFs defined in (18) are then to be considered for the de-trended data, xit (see
Section 6 for their economic interpretation in this case), and, therefore, in order to estimate
them, we have to first estimate the trend slope, bi in (26). This can be done either by de-
meaning first differences or by least squares regression, the two approaches respectively
giving for i = 1, 2, . . . , n,

b̃i =
1

T

T∑
t=1

∆yit =
yiT − yi0

T
, b̂i =

∑T
t=0(t− T

2
)(yit − ȳi)∑T

t=0(t− T
2
)2

. (27)

Lemma 6 Under Assumptions 1 and 3, for any i = 1, 2, . . . , n and as T → ∞, we have
|̃bi − bi| = Op(T

−1/2) and |̂bi − bi| = Op(T
−1/2). If xit ∼ I(0) then |̂bi − bi| = Op(T

−3/2).

Given these results and the rates in Propositions 1 and 2, the IRFs can still be estimated
consistently, as described above, also when using de-trended data.

However, it has to be noticed that finite sample properties of b̂i and b̃i might differ
substantially. First, assume to follow Bai and Ng (2004), and consider de-meaning of first
differences. Then, from principal component analysis on ∆x̃it = ∆yit− b̃i, we can estimate
the first differences of the factors, which, once integrated, give us the estimated factors,
F̃t, such that, due to differencing, F̃0 = 0. Moreover, since the sample mean of ∆x̃it is
zero by construction, then also ∆F̃t have zero sample mean and therefore we always have
F̃0 = F̃T = 0.

If instead we use least squares then we can estimate the factors as in (15) starting
directly from x̂it = yit − b̂it, without integrating ∆F̂t. Since, now, in general, ∆x̂it has
sample mean different from zero, then those estimated factors have F̂0 6= 0 and F̂0 6= F̂T .
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In this paper, we opt for this second solution, while a complete numerical and empirical
comparison of the finite sample properties of the two methods is left for further research.

4 Determining the number of factors and shocks

In the previous section we made the assumption that r, q, and d are known. Of course
this is not the case in practice and we need a method to determine them. Hereafter for
simplicity of notation we define τ = q − d, the number of shocks with permanent effects.

In light of the results in Lemma 2, we can determine r by using existing methods
based on the behaviour of the eigenvalues of the covariance of the variables ∆xit. A non-
exhaustive list of possible approaches includes the contributions by Bai and Ng (2002),
Onatski (2009), Alessi et al. (2010) and Ahn and Horenstein (2013).

In order to determine q and τ , we have instead to study the spectral density matrix of
∆xit, ∆χit and ∆ξit, which are defined by

Σ∆x(θ) = Σ∆χ(θ) + Σ∆ξ(θ) =
1

2π
ΛC(e−iθ)C′(eiθ)Λ′ + Σ∆ξ(θ), θ ∈ [−π, π]. (28)

Lemma 7 provides results for the behaviour of the eigenvalues of these matrices.

Lemma 7 Under Assumptions 1 through 4, for any n ∈ N, there exist positive reals M9,
M9, M10, M11, M11 and an integer n̄ such that
(i) M9 ≤ n−1µ∆χ

j (θ) ≤M9 a.e. in [−π, π], and for any j = 1, 2, . . . , q and n > n̄;
(ii) supθ∈[−π,π] µ

∆ξ
1 (θ) ≤M10;

(iii) M11 ≤ n−1µ∆x
j (θ) ≤M11 a.e. in [−π, π], and for any j = 1, 2, . . . , q and n > n̄;

(iv) supθ∈[−π,π] µ
∆x
q+1(θ) ≤M10;

(v) M12 ≤ n−1µ∆x
j (0) ≤M12, for any j = 1, 2, . . . , τ and n > n̄ and µ∆x

τ+1(0) ≤M10.

Parts (i) to (iv) are already known in the literature, but part (v) is a consequence of
cointegration in the common components and it is determined by C(e−iθ) in (28). Indeed,
while rk(C(e−iθ)) = q a.e. in [−π, π], this is clearly not true when θ = 0, since, because
of the existence of τ < q common trends, we have rk(C(1)) = τ , which in turn implies
rk(Σ∆χ(0)) = τ . Part (v) of Lemma 7 is then just a consequence of Weyl’s inequality.

Therefore, based on parts (iii) and (iv) of Lemma 7, we can employ the information
criterion by Hallin and Liška (2007) to determine q, by analyzing the behaviour of the
eigenvalues of the spectral density matrix Σ∆x(θ) over a window of frequencies (see also
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Onatski, 2010, for a similar approach).5 Similarly, we propose an information criterion for
determining τ based on the behaviour of the eigenvalues of the spectral density matrix
Σ∆x(θ) only at zero-frequency, as suggested by part (v) of Lemma 7.6

In particular, consider the lag-window estimator of the spectral density matrix

Σ̂∆x(θ) =
1

2π

BT∑
k=−BT

[
1

T

T−k∑
t=1

∆xt∆x′t+k

]
e−ikθw(B−1

T k)

where BT is a suitable bandwidth and w(·) is a positive even weight function. We define
the estimators for q and τ as

q̂ = argmin
k=0,...,qmax

[
log

(
1

n(2BT + 1)

BT∑
h=−BT

n∑
j=k+1

µ̂j(θh)

)
+ ks(n, T )

]
, (29)

τ̂ = argmin
k=0,...,τmax

[
log

(
1

n

n∑
j=k+1

µ̂j(0)

)
+ kp(n, T )

]
, (30)

where s(n, T ) and p(n, T ) are some suitable penalty functions, qmax and τmax are given
maximum numbers of common shocks and trends, and µ̂∆x

j (θ) are the eigenvalues of Σ̂∆x(θ).
Hallin and Liška (2007) show that under suitable asymptotic conditions on BT and

s(n, T ), the number of common shocks is consistently selected, as n, T →∞. Analogously,
we have sufficient conditions for consistency in the selection of the number of common
trends.

Proposition 3 (Number of common trends) Define ρT = (BT logBTT
−1)−1/2 and as-

sume that
(i) as T →∞, ρT →∞ and ρT/T → 0;
(ii) as n, T →∞, p(n, T )→ 0 and (nρ−1

T )p(n, T )→∞;
Then, under Assumptions 1 through 4, as n, T →∞, |τ̂ − τ | = op(1).

Finally, notice that by definition we have τ = r − c which is the number of unit roots
driving the dynamics of the common factors. Therefore, by virtue of Proposition 3, once we

5Other methods for determining q, not considered in this paper, are proposed by Amengual and Watson
(2007) and Bai and Ng (2007). Both require knowing r before determining q.

6An alternative approach not considered here is represented by the tests for cointegration in panels with
a factor structure, as for example those proposed by Bai and Ng (2004) and Gengenbach et al. (2015).
On the other hand applying the classical methods to determine the cointegration rank or the number of
common trends might be problematic due to the use of estimated factors as inputs (see e.g. Stock and
Watson, 1988, Phillips and Ouliaris, 1988, Johansen, 1991 and Hallin et al., 2016).
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determine τ , q, and r, we immediately have an estimates for both the number of transitory
shocks d = q − τ and the cointegration rank c = r − q + d = r − τ .

5 Simulations

We simulate data, from the Non-Stationary DFM with r = 4 common factors, and q = 3

common shocks, and τ = 1 common trend, thus d = q − τ = 2 and the cointegration
relations among the common factors are c = r− q+ d = 3. More precisely, for given values
of n and T , each time series follows the data generating process:

xit = λ′iFt + ξit, i = 1, 2, . . . , n, t = 1, 2, . . . , T,

A(L)Ft = KRut, ut
w.n.∼ N (0, Iq),

where λi is r × 1 with entries λij ∼ N (0, 1), A(L) is r × r with τ = r − c = 1 unit root,
K is r × q, and R, which is necessary for identification of the IRFs, is q × q.

In practice, to generate A(L), we exploit a particular Smith-McMillan factorization
(see Watson, 1994) according to which A(L) = U(L)M(L)V(L), where U(L) and V(L)

are r × r polynomial matrices with all of their roots outside the unit circle, and M(L) =

diag ((1− L)Ir−c, Ic). In particular, we set U(L) = (Ir − U1L), and V(L) = Ir, so that Ft

follow a VAR(2) with r − c unit roots, or, equivalently, a VECM(1) with c cointegration
relations. The diagonal elements of the matrix U1 are drawn from a uniform distribution
on [0.5, 0.8], while the off-diagonal elements from a uniform distribution on [0, 0.3]. The
matrix U1 is then standardized to ensure that its largest eigenvalue is 0.6. The matrix K

is generated as in Bai and Ng (2007): let K̃ be a r × r diagonal matrix of rank q with
entries drawn from a uniform distribution on [.8, 1.2], and let Ǩ be a r × r orthogonal
matrix, then, K is equal to the first q columns of the matrix ǨK̃

1
2 . Finally, the matrix R

is calibrated such that the following restrictions hold for all the simulated IRFs: φ12(0) =

φ13(0) = φ23(0) = 0.
The idiosyncratic components are generated according to the ARMA model (with a

possible unit root)

(1− ρiL)ξit =
∞∑
k=0

dki εit−k, εit ∼ N (0, 1), E[εitεjt] = 0.5|i−j|,

where ρi = 1 for i = 1, 2, . . . ,m and ρi = 0 for i = m+ 1, 2, . . . , n, so that m idiosyncratic
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components are non-stationary, while the coefficients di’s are drawn from a uniform dis-
tribution on [0, 0.5]. Each idiosyncratic component ξit is rescaled so that it accounts for a
third of the variance of the corresponding xit.

The matrices Λ, U1, G and H are simulated only once so that the set of IRFs to be
estimated is always the same, while the vectors of shocks ut and εt = (ε1t · · · εnt)′, and
all the idiosyncratic coefficients di’s are drawn at each replication. Results are based on
1000 MonteCarlo replications and the goal is to study the finite sample properties of the
two estimators of the IRFs discussed in the previous section, for different cross-sectional
and sample sizes (n and T ) and for a different numbers (m) of non-stationary idiosyncratic
components.

Tables 1 and 2 show Mean Squared Errors (MSE) for the estimated IRFs simulated
with different parameter configurations. Estimation is carried out as explained in Section
3. The loadings’ and factors’ estimators, Λ̂ and F̂t, are always computed as in (15). Then
on F̂t we fit either a VECM as in (16) or an unrestricted VAR as in (23) (in both cases a
constant is also included in the estimation). The numbers r, q, and τ are assumed to be
known.

Let φ̂(h)
ijk be the kth coefficient of the estimated IRF of the ith variable to the jth shock

at the hth replication when using a VECM or a VAR and let φijk be the corresponding
coefficient of the true simulated IRF defined in (18), then, MSEs are computed with respect
to all replications, all variables, and all shocks:

MSE(k) =
1

1000nq

n∑
i=1

q∑
j=1

1000∑
h=1

(
φ̂

(h)
ijk − φijk

)2

.

From Table 1 we can see that in the VECM case the estimation error decreases monotoni-
cally as n and T grow, while it is larger at higher horizons. Notice that, in accordance with
Proposition 1 which states that the estimation error is inversely related to the number of
non-stationary idiosyncratic components, for every couple of n and T the MSE decreases
for smaller values of m.

The picture offered by Table 2 is slightly different than the one offered by Table 1. On
the one hand, at short horizons the MSE of when considering a VAR is comparable to, or
slightly smaller than, the MSE when considering a VECM. This is in accordance with the
result of Propositions 1 and 2 according to which the converge rate for VAR is faster than
for VECM. On the other hand, at longer horizons, the MSE for the VAR case is always
larger than the MSE for the VECM case. Again this is in accordance with the fact that
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Table 1: MonteCarlo Simulations - Impulse Responses
Mean Squared Errors

VECM Estimation

T n m k = 0 k = 1 k = 4 k = 8 k = 12 k = 16 k = 20

100 100 25 0.080 0.113 0.249 0.350 0.380 0.387 0.389
100 100 50 0.078 0.115 0.276 0.425 0.490 0.513 0.521
100 100 75 0.079 0.125 0.316 0.518 0.624 0.671 0.691
100 100 100 0.074 0.129 0.344 0.575 0.706 0.765 0.792
200 200 50 0.037 0.050 0.114 0.166 0.190 0.201 0.207
200 200 100 0.035 0.053 0.132 0.211 0.267 0.306 0.332
200 200 150 0.035 0.058 0.152 0.253 0.331 0.389 0.429
200 200 200 0.034 0.064 0.169 0.269 0.352 0.419 0.469
300 300 75 0.024 0.033 0.076 0.111 0.130 0.140 0.146
300 300 150 0.023 0.037 0.093 0.136 0.166 0.189 0.206
300 300 225 0.022 0.041 0.108 0.159 0.201 0.238 0.270
300 300 300 0.021 0.044 0.121 0.183 0.238 0.291 0.338

MSE for the estimated IRFs by fitting a VECM on F̂t as in (16). T is the number of observations, n is the
number of variables, and m is the number of I(1) idiosyncratic components.

Table 2: MonteCarlo Simulations - Impulse Responses
Mean Squared Errors
Unrestricted VAR Estimation

T n m k = 0 k = 1 k = 4 k = 8 k = 12 k = 16 k = 20

100 100 25 0.081 0.110 0.267 0.527 0.747 0.904 1.013
100 100 50 0.076 0.112 0.287 0.552 0.772 0.930 1.043
100 100 75 0.078 0.123 0.313 0.596 0.822 0.979 1.088
100 100 100 0.072 0.122 0.333 0.624 0.858 1.018 1.123
200 200 50 0.038 0.050 0.125 0.250 0.384 0.511 0.625
200 200 100 0.036 0.053 0.142 0.275 0.415 0.548 0.667
200 200 150 0.034 0.057 0.157 0.285 0.419 0.549 0.667
200 200 200 0.033 0.064 0.173 0.308 0.449 0.587 0.710
300 300 75 0.023 0.032 0.083 0.165 0.257 0.352 0.444
300 300 150 0.023 0.037 0.102 0.185 0.278 0.377 0.474
300 300 225 0.022 0.041 0.114 0.195 0.287 0.387 0.486
300 300 300 0.022 0.046 0.128 0.210 0.300 0.398 0.495

MSE for the estimated IRFs by fitting a VAR on F̂t as in (23). T is the number of observations, n is the number
of variables, and m is the number of I(1) idiosyncratic components.

long run IRFs estimated with an unrestricted VAR in levels are known to be asymptotically
biased.

Finally, for the same data generating process considered above, we study the perfor-
mance of the information criterion (30), proposed in Section 4 for determining τ . Table 3
shows the percentage of times in which we estimate correctly the number of common trends
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Table 3: MonteCarlo Simulations - Number of Common Trends and Shocks
Percentage of Correct Answer

T n m τ̂ = τ q̂ = q

100 50 25 98.6 96.5
100 50 50 99.2 99.8
100 100 50 98.7 100
100 100 100 99.8 100
100 200 100 96.5 100
100 200 200 99.9 100
200 50 25 99.6 100
200 50 50 100 100
200 100 50 99.9 100
200 100 100 100 100
200 200 100 99.7 100
200 200 200 100 100

Percentage of cases in which the information criteria (29) and (30) returned
the correct number of common shocks (q̂ = q) and of common trends (τ̂ =
τ). T is the number of observations, n is the number of variables, and m is
the number of I(1) idiosyncratic components.

τ = 1. For the sake of comparison, we also report results for the information criterion (29)
by Hallin and Liška (2007) for estimating q = 3. It has to be noticed that the actual
implementation of these criteria requires a procedure of fine tuning of the penalty. Indeed,
according to the asymptotic results in Hallin and Liška (2007) and in Proposition 3, for
any constant c > 0, the functions c s(n, T ) and c p(n, T ) are also admissible penalties, and,
therefore a whole range of values of c should be explored. For this reason, numerical stud-
ies about the performance of these methods are computationally intensive, thus we limit
ourselves to a small scale study and we leave to further research a thorough comparison of
the estimator proposed in (30) with other possible methods. Still our results are promising,
since our criterion seems to work fairly well by giving the correct answer more than 95%
of the times.

6 Empirical application

In this Section we estimate the Non-Stationary DFM to study the effects of monetary policy
shocks and of supply shocks. We consider a large macroeconomic dataset comprising 101
quarterly series from 1960Q3 to 2012Q4 describing the US economy, where the complete
list of variables and transformations is reported in Appendix B. All variables that are I(1)

are not transformed, while we take first differences of those that are I(2). We then remove
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deterministic component as described at the end of Section 3, therefore the IRFs presented
in this section have to be interpreted as out of trend deviations.

The model is estimated as explained in Section 3. We find evidence of r = 7 common
factors as suggested both by the criteria in Alessi et al. (2010) and in Bai and Ng (2002),
and of q = 3 common shocks as given by the criterion in Hallin and Liška (2007). Finally,
using the information criterion described in Section 4, we find evidence of just one common
stochastic trend, τ = 1, thus d = 2 shocks have no long-run effect but the cointegration
rank for the common factors is c = 6, due to singularity of the common factors (r > q).

We then consider two different identification schemes. First, we study the effects of
a monetary policy shock, which is identified by using a standard recursive identification
scheme, according to which GDP and CPI do not react contemporaneously to the monetary
policy shock (see e.g. Forni and Gambetti, 2010). Second, we study the effects of a supply
shock, which is identified as the only shock having a permanent effect on the system (see
e.g. King et al., 1991; Forni et al., 2009). Results of these two exercises are presented in
Figures 1 and 2, respectively. In both figures the black lines are the IRFs obtained by
fitting a VECM on F̂t and the grey lines are the IRFs obtained by fitting an unrestriced
VAR on F̂t. The dotted black lines and the grey shaded areas are the respective 68%
bootstrap confidence bands.

Figure 1 shows the IRFs to a monetary policy shock normalized so that at impact it
raises the Federal Funds rate by 50 basis points. GDP and Residential Investments respond
negatively to a contractionary monetary policy shock, and then they revert to the baseline.
Similarly, consumer prices, which are modeled as I(2), stabilize, meaning that inflation
reverts to zero. These IRFs, and in particular their long-run behaviour, are consistent with
economic theory according to which a monetary policy shock has only a transitory effect on
the economy. On the contrary, the IRFs estimated with a stationary DFM, i.e. with data
in first differences, display non-plausible permanent effects of monetary policy shocks on
all variables (not shown here). Notice also that there is no significant difference between
estimates obtained using a VECM or an unrestricted VAR for the factors. Finally, the
IRFs in Figure 1 are very similar, both in terms of shape and in terms of size, to those
obtained with Large Bayesian VARs estimated in levels (see e.g. Giannone et al., 2015).

Figure 2 shows the IRFs to a supply policy shock normalized so that at impact it
increases GDP of 0.25%. All variables have a hump shaped response, with a maximum
between six and seven quarters after the shock. The deviation from the trend estimated
by fitting a VECM is 0.23% after ten years, and 0.12% after twenty years and onwards.
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Figure 1: Impulse Response Functions to a Monetary Policy Shock
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Solid black lines are the IRFs obtained from the Non-Stationary DFM by estimating a VECM on F̂t with 68% bootstrap
confidence bands (dashed). Solid grey lines are the IRFs obtained from the Non-Stationary DFM by estimating a VAR
on F̂t with 68% confidence bands (shaded areas). The monetary policy shock is normalized so that at impact it
increases the Federal Funds rate of 50 basis points.

Differently from the results in Figure 1, while the IRFs obtained using a VECM or an
unrestricted VAR show no difference in the short-run, at very long horizons significant
differences appear. Notably, the IRFs estimated by fitting an unrestricted VAR tend to
diverge. This result is consistent with lack of consistency of long-run IRFs obtained without
imposing the presence of unit roots (see Proposition 2). Indeed, when, as in this case, we fit
an unrestricted VAR on F̂t and we impose long-run identifying restrictions, we are actually
imposing constraints on a matrix which is not consistently estimated. This unavoidably
compromises the estimated structural responses.

Differently from the case of a monetary policy shock, economic theory does not tell us
neither what should be the long-run effect of a supply shock, besides being permanent, nor
what should be the shape of the induced dynamic response. Hence, we cannot say a priori
whether the effect found is realistic or not. While with our approach, we find that a supply
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shock induces on GDP a permanent deviation of about 0.12% from its historical trend,
with a stationary DFM we find a deviation of about 0.67% (not shown here). Finally,
notice that similar IRFs are found also in Dedola and Neri (2007) and Smets and Wouters
(2007), when employing other estimation techniques.

To summarize, the empirical analysis of this section shows that the proposed Non-
Stationary DFM is able to reproduce the main features of the dynamic effects of both
temporary and permanent shocks postulated by macroeconomic theory

7 Conclusions

In this paper, we propose a Non-Stationary Dynamic Factor Model (DFM) for large
datasets. The natural use of these class of models in a macroeconomic context motivates
the main assumptions upon which the present theory is built. This paper is complementary
to another one where we address representation theory (Barigozzi et al., 2016).

Estimation of impulse response functions (IRFs) is obtained with a two-step estimator
based on approximate principal components, and on a VECM—or an unrestriced VAR
model—for the latent I(1) common factors. This estimator is consistent when both the
cross-sectional dimension n and the sample size T of the dataset grow to infinity. Further-
more, we also propose an information criterion to determine the number of common trends
in a large dimensional setting. A numerical and empirical study show the validity and
usefulness of our approach.

The results of this paper are useful beyond estimation of IRFs in Non-Stationary DMFs.
First, our estimation approach could also be used for estimating and validating Dynamic
Stochastic General Equilibrium models in a data-rich environment (see Boivin and Gi-
annoni, 2006, for the stationary case). Second, with such goal in mind and given the
state-space form of our model, we could think of Quasi Maximum Likelihood estimation
(see Doz et al., 2012, for the stationary case), thus allowing us to impose economically
relevant restrictions on the model parameters. Third, our asymptotic results could be
straightforwardly extended to estimation of IRFs in a non-stationary Factor Augmented
VAR setting (see Bai and Ng, 2006, for the stationary case) and form the theoretical
foundation of the existing empirical studies based non-stationary factor models (see e.g.
Eickmeier, 2009; Banerjee et al., 2017). Last, our approach could be generalized to build
an unrestricted Non-Stationary DMF, similar to the one proposed by Forni et al. (2017,
2015) for stationary data.
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Figure 2: Impulse Response Functions to a Supply Shock
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Solid black lines are the IRFs obtained from the Non-Stationary DFM by estimating a VECM on F̂t with 68% bootstrap
confidence bands (dashed). Solid grey lines are the IRFs obtained from the Non-Stationary DFM by estimating a VAR
on F̂t with 68% confidence bands (shaded areas). The supply shock is normalized so that at impact it increases GDP
of 0.25%.
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A Technical appendix

Preliminary definitions and notation
Norms. For any m× p matrix B with generic element bij , we denote its spectral norm as ‖B‖ =√
µB

′B
1 , where µB′B

1 is the largest eigenvalue of B′B, the Frobenius norm as ‖B‖F =
√

tr(B′B) =√∑
i

∑
j b

2
ij , and the column and row norm as ‖B‖1 = maxj

∑
i |bij | and ‖B‖∞ = maxi

∑
j |bij |,

respectively. We use the following properties.

1. Subadditivity of the norm, for an m× p matrix A and a p× s matrix B:

‖AB‖ ≤ ‖A‖ ‖B‖. (A1)

2. Norm inequalities, for an n× n symmetric matrix A:

µA1 = ‖A‖ ≤
√
‖A‖1 ‖A‖∞ = ||A||1, ‖A‖ ≤ ‖A‖F . (A2)

3. Weyl’s inequality, for two n× n symmetric matrices A and B, with eigenvalues µAj and µBj

|µAj − µBj | ≤ ‖A−B‖, j = 1, . . . , n. (A3)

Factors’ dynamics. It is convenient to write the equations governing the dynamics of the factors,
(8), as

∆Fjt = c′j(L)ut =

q∑
l=1

cjl(L)ult, j = 1, . . . r, (A4)

where cj(L) is an q× 1 infinite rational polynomial matrix with entries cjl(L). Due to rationality,
there exists a positive real K1 such that

sup
j=1,...,r
l=1,...,q

∞∑
k=0

c2
jlk ≤ K1. (A5)

From Assumption 5 we also have Fjt =
∑t

s=1 c′j(L)us.

Idiosyncratic dynamics. Likewise, for the idiosyncratic components it is convenient to write
(10) as

∆ξit = ďi(L)εit, i = 1, . . . , n,

where ďi(L) are a infinite polynomials defined as ďi(L) = (1−L)(1− ρiL)−1di(L) with di(L) also
infinite polynomials. Because of Assumption 3(b) there exists a positive real K2 such that

sup
i=1,...,n

∞∑
k=0

ď 2
ik ≤ K2. (A6)
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Moreover, with reference to Assumption 6(a) we have ρi = 1 if i ∈ I1 and |ρi| < 1 if i ∈ Ic1.
Hence, by Assumptions 5, we have also ξit =

∑t
s=1 ďi(L)εis, which is non-stationary if and only

if i ∈ I1.

Rates. We define ζnT,δ = max(T 1/2n−(2−δ)/2, n−(1−δ)/2), with δ ≥ 0, and ϑnT,δ = max
(
ζnT,δ, T

−1/2
)
.

Under Assumptions 6(a) and 6(b), we have ζnT,δ → 0 and ϑnT,δ → 0, as n, T →∞.

A.1 Proof of Lemma 1
First notice that, from Assumption 4(e), we have

1

n

n∑
i,j=1

|E[εitεjt]| ≤ max
i=1,...,n

n∑
j=1

|E[εitεjt]| ≤M4.

Define Γε0 = E[εtε
′
t], then Assumption 4(e) reads ‖Γε0‖1 ≤ M4, thus, from (A2), we have µε1 =∥∥Γε0∥∥ ≤ ∥∥Γε0∥∥1

≤M4. By setting M5 = M4, we complete the proof. �

A.2 Proof of Lemma 2
Define Γ∆F

0 = E[∆Ft∆F′t]. Then, we can write Γ∆F
0 = W∆FM∆FW∆F ′ , where W∆F is the r×r

matrix of normalized eigenvectors and M∆F the corresponding diagonal matrix of eigenvalues.
Now, define a new n× r loadings matrix L = ΛW∆F (M∆F )1/2. Under (14), this matrix satisfies
Assumption 2(a) since

L′L

n
= M∆F , (A7)

and by Assumption 1(b) and square summability of the coefficients given in (A5), all eigenvalues
of Γ∆F

0 are positive and finite, i.e. there exist positive reals M6 and M6 such that

M6 ≤ µ∆F
j ≤M6, j = 1, . . . , r. (A8)

Then, the covariance matrix of the first differences of the common component is given by

Γ∆χ
0

n
=

ΛW∆FM∆FW∆F ′
Λ′

n
=
LL′

n
.

Therefore, the non-zero eigenvalues of Γ∆χ
0 are the same as those of L′L, and from (A7), we have

for any n, n−1µ∆χ
j = µ∆F

j , for any j = 1, . . . , r. Part (i) then follows from (A8).
As for part (ii), we have

µ∆ξ
1 =

∥∥Γ∆ξ
0

∥∥ ≤ ∞∑
k=0

∥∥Ďk

∥∥2 ∥∥Γε0∥∥ ≤ K2M4 = M7, (A9)

because of square summability of the coefficients, with K2 defined in (A6), and from Lemma 1.
Finally, parts (iii) and (iv) are immediate consequences of Assumption 3(d) of uncorrelated

common and idiosyncratic shocks, which implies that Γ∆x
0 = Γ∆χ

0 + Γ∆ξ
0 and of Weyl’s inequality
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(A3). So, because of parts (i) and (ii), there exist positive reals M8 and M8, such that, for
j = 1, . . . , r, and for any n ∈ N,

µ∆x
j

n
≤
µ∆χ
j

n
+
µ∆ξ

1

n
≤M6 +

µ∆ξ
1

n
≤M6 +

M7

n
= M8,

µ∆x
j

n
≥
µ∆χ
j

n
+
µ∆ξ
n

n
≥M6 +

µ∆ξ
n

n
= M8,

This proves part (iii). When j = r + 1, using parts (i) and (ii), and since rk(Γ∆χ
0 ) = r, we have

µ∆x
r+1 ≤ µ

∆χ
r+1 + µ∆ξ

1 = µ∆ξ
1 ≤M7, thus proving part (iv). This completes the proof. �

A.3 Proof of Lemma 3
Intermediate results

Lemma A1 Define the covariance matrix Γ∆x
0 = E[∆xt∆x′t] with generic (i, j)-th element γ∆x

ij =

E[∆xit∆xjt]. Then, under Assumptions 1 through 5, as T → ∞, |T−1
∑T

t=1 ∆xit∆xit − γ∆x
ij | =

Op(T
−1/2), for any i, j = 1, . . . , n.

Proof. First notice that γ∆x
ij = λ′iΓ

∆F
0 λj+γ

∆ξ
ij , where λ′i is the i-th row of Λ, Γ∆F

0 = E[∆Ft∆F′t],
and γ∆ξ

ij = E[∆ξit∆ξjt]. Then, we also have

E

[
1

T

T∑
t=1

∆Ft∆F′t

]
=

1

T

T∑
t=1

E

[( ∞∑
k=0

Ckut−k

)( ∞∑
k′=0

Ck′ut−k′

)′]
=

∞∑
k=0

CkC
′
k = Γ∆F

0 , (A10)

where we used Assumption 1(a) which implies that ut is a white noise. Moreover, rk(Γ∆F
0 ) = r

because of Assumption 1(b), and ‖Γ∆F
0 ‖ = O(1) because of square summability of the coeffi-

cients given in (A5). Hence, Γ∆F
0 is well defined. For the idiosyncratic component we trivially

have E[T−1
∑T

t=1 ∆ξit∆ξjt] = γ∆ξ
ij , therefore by Assumption 3(d) of uncorrelated common and

idiosyncratic shocks, E[T−1
∑T

t=1 ∆xit∆xit] = γ∆x
ij .
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Now, denote as γ∆F
ij the generic (i, j)-th element of Γ∆F

0 . Then, from (A2) and (A4),

E

[∥∥∥∥ 1

T

T∑
t=1

∆Ft∆F′t − Γ∆F
0

∥∥∥∥2]
≤

r∑
i,j=1

1

T 2
E

[ T∑
t,s=1

(
∆Fit∆Fjt − γ∆F

ij

)(
∆Fis∆Fjs − γ∆F

ij

)]

=

r∑
i,j=1

1

T 2

T∑
t,s=1

(
E
[
∆Fit∆Fjt∆Fis∆Fjs

]
− (γ∆F

ij )2
)

≤r
2K4

1q
4

T 2

T∑
t,s=1

E[ultul′tuhsuh′s]−
r2K4

1q
4

T 2

T∑
t,s=1

(E[ultul′t])
2

=
r2K4

1q
4

T 2

T∑
t,s=1

E[u2
lt]E[u2

hs] +
r2K4

1q
4

T 2

T∑
t=1

E[u2
ltu

2
ht] +

r2K4
1q

4

T 2

T∑
t=1

E[u4
lt]−

r2K4
1q

4

T 2

T∑
t,s=1

(E[u2
lt])

2

=
r2K4

1q
4

T 2

T∑
t=1

E[u2
lt]E[u2

ht] =
r2K4

1q
4

T
= O

(
1

T

)
, (A11)

where we used Assumption 4(a) of independence of ut and Assumption 4(b) of existence of fourth
moments, plus square summability of the coefficients, with K1 defined in (A5). Therefore, from
(A11), we have ∥∥∥∥ 1

T

T∑
t=1

∆Ft∆F′t − Γ∆F
0

∥∥∥∥ = Op

(
1√
T

)
. (A12)

In the same way, for the idiosyncratic component we have

E

[∥∥∥∥ 1

T

T∑
t=1

∆ξit∆ξjt − γ∆ξ
ij

∥∥∥∥2]
≤ 1

T 2

T∑
t,s=1

(
E
[
∆ξit∆ξjt∆ξis∆ξjs

]
− (γ∆ξ

ij )2
)

≤K
4
2

T 2

T∑
t=1

E[ε2
itε

2
jt] ≤

K4
2M3

T
= O

(
1

T

)
, (A13)

where we used Assumption 4(c) of independence of εt and Assumption 4(d) of existence of fourth
moments and square summability of the coefficients, with K2 defined in (A6). Therefore, from
(A11), we have ∥∥∥∥ 1

T

T∑
t=1

∆ξit∆ξjt − γ∆ξ
ij

∥∥∥∥ = Op

(
1√
T

)
. (A14)

By combining (A12) and (A14) and Assumption 2(b) of bounded loadings we complete the proof.�

Lemma A2 For any given t, under Assumptions 1 through 6 and as n, T →∞,
(i) ‖∆Ft‖ = Op(1);
(ii) ‖T−1/2Ft‖ = Op(1);
(iii) ‖n−1/2∆ξt‖ = Op(1);
(iv) ‖(nT )−1/2ξt‖ = Op(1);
(v) ‖n−1/2Λ′∆ξt‖ = Op(1);
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(vi) ‖(nT )−1/2Λ′ξt‖ = Op(1);
(vii) ‖n−1/2ξt‖ = Op(T

1/2n−(1−δ)/2);
(viii) ‖n−1/2Λ′ξt‖ = Op(T

1/2n−(1−δ)/2).

Proof. For part (i), just notice that, since by Assumption 1(a) ∆Fjt ∼ I(0) for any j = 1, . . . , r,
then they have finite variance. This proves part (i) by Chebychev’s inequality.

For part (ii), we have

E

[∥∥∥∥ Ft√
T

∥∥∥∥2]
=

1

T

r∑
j=1

E
[
F 2
jt

]
=

1

T

r∑
j=1

E

[( t∑
s=1

q∑
l=1

cjl(L)uls

)2]

=
1

T

r∑
j=1

t∑
s,s′=1

q∑
l,l′=1

∞∑
k,k′=0

cjlkcjl′k′E[uls−kul′s′−k′ ] ≤
rqK1t

T
≤ rqK1, (A15)

since t ≤ T and where we used the fact ut is a white noise because of Assumption 1(a) and we
used square summability of the coefficients, with K1 defined in (A5). This proves part (ii).

For part (iii), for any n ∈ N, we have,

E

[∥∥∥∥∆ξt√
n

∥∥∥∥2]
=

1

n

n∑
i=1

E
[
∆ξ2

it

]
=

1

n

n∑
i=1

E[(ďi(L)εit)
2]

=
1

n

n∑
i=1

∞∑
k,k′=0

ďjkďik′E[εit−kεit−k′ ] ≤ K2 max
i

E[ε2
it], (A16)

where we used Assumption 3(a) of serially uncorrelated εt and square summability of the coeffi-
cients, with K2 defined in (A6). Also because of the existence of fourth moments in Assumption
4(d) the variance of εit is finite for any i. This proves part (iii).

Similarly, for part (iv), for any n ∈ N, we have,

E

[∥∥∥∥ ξt√
nT

∥∥∥∥2]
=

1

nT

n∑
i=1

E
[
ξ2
it

]
=

1

nT

n∑
i=1

E

[( t∑
s=1

ďi(L)εis

)2]

=
1

nT

n∑
i=1

t∑
s,s′=1

∞∑
k,k′=0

ďikďik′E[εis−kεis′−k′ ] ≤
K2t

T
max
i

E[ε2
it] ≤ K2 max

i
E[ε2

it], (A17)

since t ≤ T and where we used the same assumptions as in (A16). This proves part (iv).
As for part (v), for any n ∈ N, we have

E

[∥∥∥∥Λ′∆ξt√
n

∥∥∥∥2]
=

1

n

r∑
j=1

E

[( n∑
i=1

λij∆ξit

)2]
=

1

n

r∑
j=1

n∑
i,l=1

E
[
λij∆ξitλlj∆ξlt

]
≤rC

2

n

n∑
i,l=1

∞∑
k,k′=0

ďikďlk′E[εit−kεlt−k′ ] ≤
rC2K2

n

n∑
i,l=1

∣∣E[εitεlt]
∣∣ ≤ rC2K2M4, (A18)

where we used the same assumptions as in (A16), Assumption 2(b) of bounded loadings, and
Lemma 1. This proves part (v).
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Similarly for part (vi), for any n ∈ N, we have

E

[∥∥∥∥Λ′ξt√
nT

∥∥∥∥2]
=

1

nT

r∑
j=1

E

[( n∑
i=1

λijξit

)2]
=

1

nT

r∑
j=1

n∑
i,l=1

E
[
λijξitλljξlt

]
≤rC

2

nT

n∑
i,l=1

t∑
s,s′=1

∞∑
k,k′=0

ďikďlk′E[εis−kεls′−k′ ] ≤
rC2K2t

nT

n∑
i,l=1

∣∣E[εitεlt]
∣∣ ≤ rC2K2M4, (A19)

where we used the same assumptions as in (A18). This proves part (vi).
Now consider part (vii). Using Assumption 6(a), for any n ∈ N, we can write

E

[∥∥∥∥ ξt√n
∥∥∥∥2]

=
1

n

∑
i∈I1

E
[
ξ2
it

]
+

1

n

∑
i∈Ic1

E
[
ξ2
it

]
. (A20)

The second term on the rhs is bounded for any n ∈ N because it is a sum of stationary components
and we can use the same reasoning as for part (iii). For the first term on the rhs, using Assumption
6(a) and part (iv), we have (multiply and divide by m)

1

n

∑
i∈I1

E
[
ξ2
it

]
≤ K2Tm

n
max
i

E[ε2
it] = O

(
T

n1−δ

)
, (A21)

which proves part (vii).
Finally, for part (viii), using the same reasoning as for part (vii), we can write

E

[∥∥∥∥Λ′ξt√
n

∥∥∥∥2]
=

1

n

r∑
j=1

n∑
i,l=1

E
[
λijξitλljξlt

]
=

1

n

r∑
j=1

∑
i,l∈I1

E
[
λijξitλljξlt

]
+

1

n

r∑
j=1

∑
i,l∈Ic1

E
[
λijξitλljξlt

]
+

2

n

r∑
j=1

∑
i∈I1

∑
l∈Ic1

E
[
λijξitλljξlt

]
. (A22)

The second term on the rhs is bounded because it is a sum of products of stationary components
as in (A18) and therefore it behaves as part (v). For the first term on the rhs, using Assumption
6(a) and part (iv), we have (multiply and divide by m)

1

n

r∑
j=1

∑
i,l∈I1

E
[
λijξitλljξlt

]
≤ rC2K2T

n

∑
i,l∈I1

∣∣E[εitεlt]
∣∣ ≤ rC2K2M4Tm

n
= O

(
T

n1−δ

)
. (A23)

Similarly, the third term on the rhs of (A22) is bounded as follows

1

n

r∑
j=1

∑
i∈I1

∑
l∈Ic1

E
[
λijξitλljξlt

]
≤ rC2K2T

n

∑
i∈I1

∑
l∈Ic1

∣∣E[εitεlt]
∣∣ ≤ rC2K2M9Tn

γ

n
= O

(
T

n1−γ

)
.

(A24)

We prove part (viii) by substituting (A23) and (A24) into (A22), and by noticing that (A23)
converges to zero slower than (A24) because γ < δ by Assumption 6(c). This completes the proof.
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Proof of Lemma 3

The sample covariance of ∆xt is given by Γ̂∆x
0 = T−1

∑T
t=1 ∆xt∆x′t and from Assumption 3(d)

of uncorrelated common and idiosyncratic components, we have Γ∆x
0 = Γ∆χ

0 + Γ∆ξ
0 . Moreover,

from Lemma A1, we have ∥∥∥∥ Γ̂∆x
0

n
− Γ∆x

0

n

∥∥∥∥ = Op

(
1√
T

)
. (A25)

From (A25), Lemma 2(ii) and Assumption 3(d) we also have∥∥∥∥ Γ̂∆x
0

n
− Γ∆χ

0

n

∥∥∥∥ ≤ ∥∥∥∥ Γ̂∆x
0

n
− Γ∆x

0

n

∥∥∥∥+

∥∥∥∥Γ∆x
0

n
− Γ∆χ

0

n

∥∥∥∥ =

∥∥∥∥ Γ̂∆x
0

n
− Γ∆x

0

n

∥∥∥∥+

∥∥∥∥Γ∆ξ
0

n

∥∥∥∥
=Op

(
1√
T

)
+
µ∆ξ

1

n
≤ Op

(
1√
T

)
+
M7

n
= Op

(
max

(
1√
T
,

1

n

))
. (A26)

Now, define the n × r matrices W∆χ and Ŵ∆x, having as columns the normalized eigenvectors
corresponding to the j-th largest eigenvalues of Γ∆χ

0 and Γ̂∆x
0 , respectively. From Theorem 2 in

Yu et al. (2015), which is a consequence of the “sin θ” Theorem in Davis and Kahan (1970), we
have

∥∥Ŵ∆x −W∆χJ
∥∥ =

23/2√r‖Γ̂∆x
0 − Γ∆χ

0 ‖
min

(
µ∆χ

0 − µ∆χ
1 , µ∆χ

r − µ∆χ
r+1

) , (A27)

where J is a diagonal r × r matrix with entries ±1 and we define µ∆χ
0 =∞ for any n ∈ N. Since

µ∆χ
r+1 = 0 then, from Lemma 2(i) and (A26), we have

∥∥Ŵ∆x −W∆χJ
∥∥ ≤ 23/2√r‖Γ̂∆x

0 − Γ∆χ
0 ‖

nM6

= Op

(
max

(
1√
T
,

1

n

))
. (A28)

Moreover, given the identification constraint (13), we identify the first difference of the factors
(up to a sign) as the r (non-normalized) principal components of the common component vector:

∆Ft =
1√
n

W∆χ′
∆χt =

1√
n

W∆χ′
Λ∆Ft. (A29)

Since the eigenvectors are normalized, (A29) implies Λ = n1/2W∆χ, such that (14) is satisfied
for any n ∈ N, while the loadings estimator is defined as Λ̂ = n1/2Ŵ∆x, and therefore n−1Λ̂′Λ̂ =
Ir.By substituting these expressions for Λ and Λ̂ in (A28), we have

∥∥Ŵ∆x −W∆χJ
∥∥ =

∥∥∥∥Λ̂−ΛJ√
n

∥∥∥∥ = Op

(
max

(
1√
T
,

1

n

))
, (A30)

and also ∥∥∥∥Λ̂′Λ

n
− J

∥∥∥∥ = Op

(
max

(
1√
T
,

1

n

))
. (A31)
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In order to prove part (i), we need some other intermediate results. We denote as εi an n-
dimensional vector with 1 as i-th entry and all other entries equal to zero. Then,∥∥∥∥ ε′i√n(Γ̂∆x

0 − Γ∆χ
0

)∥∥∥∥ ≤ ∥∥∥∥ ε′i√n(Γ̂∆x
0 − Γ∆x

0

)∥∥∥∥+

∥∥∥∥ε′iΓ∆ξ
0√
n

∥∥∥∥ ≤ ∥∥∥∥ ε′i√n(Γ̂∆x
0 − Γ∆x

0

)∥∥∥∥
F

+

∥∥∥∥ε′iΓ∆ξ
0√
n

∥∥∥∥
≤

√√√√ 1

n

n∑
j=1

(
γ̂∆x
ij − γ∆x

ij

)2
+
µ∆ξ

1√
n
≤ Op

(
1√
T

)
+
M7√
n

= Op

(
max

(
1√
T
,

1√
n

))
,

(A32)

where we used Lemmas A1 and 2(ii). Similarly, we can show that∥∥∥∥ε′iΓ∆χ
0√
n

∥∥∥∥ = O(1). (A33)

For the eigenvalues µ∆χ
j of Γ∆χ

0 and µ̂∆x
j of Γ̂∆x

0 , and using Weyl’s inequality (A3), we have

∣∣∣∣ µ̂∆x
j

n
−
µ∆χ
j

n

∣∣∣∣ ≤ ∥∥∥∥ Γ̂∆x
0

n
− Γ∆χ

0

n

∥∥∥∥ = Op

(
max

(
1√
T
,

1

n

))
, j = 1, . . . , r. (A34)

From Lemma 2(i) and (A34), we also have

µ∆χ
r

n
≥M6 > 0,

µ̂∆x
r

n
≥M6 +Op

(
max

(
1√
T
,

1

n

))
. (A35)

Define as M∆χ and M̂∆x the diagonal r × r matrices with diagonal elements µ∆χ
j and µ̂∆x

j ,
respectively. Therefore, from (A35), the matrix n−1M∆χ is invertible, the inverse of n−1M̂∆x

exists with probability tending to one as n, T →∞, and (see also Lemma 2 in Forni et al., 2009)∥∥∥∥(M∆χ

n

)−1∥∥∥∥ =
n

µ∆χ
r

= O(1). (A36)

Moreover, from (A34) and (A35), we have

∥∥∥∥(M̂∆x

n

)−1

−
(

M∆χ

n

)−1∥∥∥∥ ≤ ∥∥∥∥(M̂∆x

n

)−1

−
(

M∆χ

n

)−1∥∥∥∥
F

=

√√√√ r∑
j=1

(
n

µ̂∆x
j

− n

µ∆χ
j

)2

≤
r∑
j=1

n

∣∣∣∣ µ̂∆x
j − µ

∆χ
j

µ̂∆x
j µ∆χ

j

∣∣∣∣ ≤ rmax1≤j≤r |µ̂∆x
j − µ

∆χ
j |

nM2
6 +Op

(
max

(
n√
T
, 1
)) = Op

(
max

(
1√
T
,

1

n

))
.

(A37)

Finally, notice that the columns of W∆χJ are also normalised eigenvectors of Γ∆χ
0 , that is

Γ∆χ
0 W∆χJ = W∆χJM∆χ. Therefore, using (A28), (A32), (A33), (A36), and (A37), for a given i
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we have

∥∥√nε′iŴ∆x −
√
nε′iW

∆χJ
∥∥ =

∥∥∥∥ ε′i√n
[
Γ̂∆x

0 Ŵ∆x

(
M̂∆x

n

)−1

− Γ∆χ
0 W∆χJ

(
M∆χ

n

)−1]∥∥∥∥
≤
∥∥∥∥ ε′i√n(Γ̂∆x

0 − Γ∆χ
0

)∥∥∥∥ ∥∥∥∥(M∆χ

n

)−1∥∥∥∥+

∥∥∥∥ε′iΓ∆χ
0√
n

∥∥∥∥ ∥∥∥∥(M̂∆x

n

)−1

−
(

M∆χ

n

)−1∥∥∥∥
+
∥∥Ŵ∆x −W∆χJ

∥∥ ∥∥∥∥ε′iΓ∆χ
0√
n

∥∥∥∥ ∥∥∥∥(M∆χ

n

)−1∥∥∥∥+ op

(
max

(
1√
T
,

1√
n

))
= Op

(
max

(
1√
T
,

1√
n

))
.

By noticing that λ′i =
√
nε′iW

∆χ and λ̂′i =
√
nε′iŴ

∆x, we complete the proof of part (i).

Given the loadings estimator Λ̂, the factors are estimated as F̂t = n−1Λ̂′xt and therefore
∆F̂t = n−1Λ̂′∆xt. Then, for a given t,

∥∥∆F̂t − J∆Ft

∥∥ =

∥∥∥∥Λ̂′∆xt
n

− J∆Ft

∥∥∥∥ ≤ ∥∥∥∥Λ̂′Λ∆Ft

n
− J∆Ft

∥∥∥∥+

∥∥∥∥Λ̂′∆ξt
n

∥∥∥∥
≤
∥∥∥∥Λ̂′Λ

n
− J

∥∥∥∥ ‖∆Ft‖+

∥∥∥∥Λ̂−ΛJ√
n

∥∥∥∥ ∥∥∥∥∆ξt√
n

∥∥∥∥+

∥∥∥∥Λ′∆ξt
n

∥∥∥∥ ‖J‖
= Op

(
max

(
1√
T
,

1√
n

))
,

where we used (A30), (A31), and Lemma A2(i), A2(iii) and A2(v). Obviously ‖J‖ = 1. This
proves part (ii).

Similarly, for part (iii), for a given t we have

1√
T

∥∥F̂t − JFt

∥∥ ≤ ∥∥∥∥Λ̂′Λ

n
− J

∥∥∥∥ ∥∥∥∥ Ft√
T

∥∥∥∥+

∥∥∥∥Λ̂−ΛJ√
n

∥∥∥∥ ∥∥∥∥ ξt√
nT

∥∥∥∥+

∥∥∥∥Λ′ξt

n
√
T

∥∥∥∥ ‖J‖
= Op

(
max

(
1√
T
,

1√
n

))
,

where we used (A30), (A31), and Lemma A2(ii), A2(iv) and A2(vi). This completes the proof. �

A.4 Proof of Lemma 4
Intermediate results

Lemma A3 Under Assumptions 1 through 6, as n, T →∞,∥∥∥∥Λ̂−ΛJ√
n

∥∥∥∥ = Op

(
1√
T

)
and

∥∥∥∥Λ̂′Λ

n
− J

∥∥∥∥ = Op

(
1√
T

)
.

Proof. Under Assumption 6(b), we have n > T 1/(2−δ) with δ ≥ 0, the lower bound for n being
n > T 1/2, and, therefore, (A30) and (A31) are both Op(T−1/2). This completes the proof. �
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Lemma A4 Under Assumptions 1 and 5
(i) The factors admit the common trends decomposition

Ft = C(1)

t∑
s=1

us + Č(L)ut = ψη′
t∑

s=1

us + Č(L)ut,

where ψ is r × q − d, η is q × q − d, and Č(L) is an r × q infinite rational polynomial
matrix also with square summable coefficients. The r× c cointegration matrix β is such that
β′C(1) = 0c×q.

(ii) For a given t, as n, T →∞, ‖β′Ft‖ = Op(1).

Proof. The proof follows Lemma 2.1 in Phillips and Solo (1992). Using the Beveridge-Nelson
decomposition of C(L) in (8), we can write

∆Ft = C(1)ut + Č(L)(ut − ut−1),

where Č(L) =
∑∞

k=0 ČkL
k with Čk = −

∑∞
h=k+1 Ch. Then,

Ft = C(1)
t∑

s=1

us + ωt, (A38)

where ωt = Č(L)(ut − u0) = Č(L)ut, since ut = 0 when t ≤ 0 by Assumption 5, and ωt ∼ I(0),
because of square summability of the coefficients of Č(L). Moreover, from Assumption 1(a) of
cointegration, we have C(1) = ψη′, where ψ is r×r−c and η is q×r−c. Since β is a cointegrating
vector for Ft, we have β = ψ⊥ and therefore β′C(1) = 0c×q. This proves part (i).

For part (ii), from (A38), we have

β′Ft = β′ωt = β′Č(L)ut.

Define C∗(L) = β′Č(L) and notice that it has square summable coefficients because of square
summability of the coefficients of C(L), then

E
[∥∥β′Ft

∥∥2]
=

r∑
j=1

E[(c∗
′
j (L)ut)

2] =

r∑
j=1

E

[( q∑
l=1

c∗jl(L)ult

)2]

=
r∑
j=1

q∑
l,l′=1

∞∑
k,k′=0

c∗jlkc
∗
jl′k′E[ult−kul′t−k′ ] ≤ rqK1, (A39)

where we used the fact ut is a white noise because of Assumption 1(a) and we used square summa-
bility of the coefficients, with K1 defined in (A5). Part (ii) is proved by means of Chebychev’s
inequality. This completes the proof. �

Lemma A5 Define the autocovariance matrices Γ∆F
k = E[∆Ft∆F′t−k], with k ∈ Z, and the

long-run autocovariance matrices Γ∆F
L0 = Γ∆F

0 + 2
∑∞

h=1 Γ∆F
h and Γ∆F

L1 =
∑∞

h=1 Γ∆F
h . Denote as

Wr(·) an r-dimensional Brownian motion with finite covariance of rank q − d and analogously
define Wq(·) having finite covariance of rank q. Define the autocovariances of ωt in (A38) as Γωh
and long-run covariance ΓωL0 = Γω0 + 2

∑∞
h=1 Γωh . Under Assumptions 1, 4 and 5, as T →∞,
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(i) ‖T−1
∑T

t=k+1 ∆Ft∆F′t−k − Γ∆F
k ‖ = Op(T

−1/2);

(ii) T−2
∑T

t=1 FtF
′
t
d→ (Γ∆F

L0 )1/2
( ∫ 1

0 Wr(τ)W′
r(τ)dτ

)
(Γ∆F

L0 )1/2;

(iii) T−1
∑T

t=1 Ft−1∆F′t
d→ (Γ∆F

L0 )1/2
( ∫ 1

0 Wr(τ)dW′
r(τ)

)
(Γ∆F

L0 )1/2 + Γ∆F
L1 ;

(iv) T−1
∑T

t=1 FtF
′
tβ

d→ C(1)
( ∫ 1

0 Wq(τ)dW′
r(τ)

)
(ΓωL0)1/2β + Γω0β;

(v) ‖T−1
∑T

t=1 β
′FtF

′
tβ − β′Γω0β‖ = ‖T−1

∑T
t=1 β

′FtF
′
tβ − E[β′FtF

′
tβ]‖ = Op(T

−1/2);
(vi) ‖T−1

∑T
t=1 ∆FtF

′
t−1β−

(
Γω1−Γω0

)
β‖ = ‖T−1

∑T
t=1 ∆FtF

′
t−1β−E[∆FtF

′
t−1β]‖ = Op(T

−1/2).

Proof. For part (i), the case k = 0 is proved in (A12) in the proof of Lemma A1. The proof for
the autocovariances, i.e. when k 6= 0, is analogous.

For parts (ii) and (iii), first notice that, by Assumption 1,

Γ∆F
L0 =

∞∑
k=0

CkC
′
k +

∞∑
h=1

∞∑
k=h

(
CkC

′
k+h + Ck+hC

′
k

)
, (A40)

which is positive definite, and by square summability of the coefficients this matrix is also finite.
Moreover, by Assumptions 4(a) and 4(b) the vector ut satisfies the assumptions of Corollary 2.2
in Phillips and Durlauf (1986), then parts (ii) and (iii) are direct consequences of Lemma 3.1 in
Phillips and Durlauf (1986).

Turning to part (iv), since β′Ft = β′ωt, because of Lemma A4(i), then,

1

T

T∑
t=1

FtF
′
tβ = C(1)

[
1

T

T∑
t=1

( t∑
s=1

us

)
ω′t

]
β +

[
1

T

T∑
t=1

ωtω
′
t

]
β. (A41)

Define t = bTτc for τ ∈ [0, 1] and the functionals

Xu,T (τ) =
1√
T

bTτc∑
s=1

us, Xω,T (τ) =
1√
T

(
ΓωL0

)−1/2
bTτc∑
s=1

ωs,

where as for (A40) we can show that ΓωL0 = Γω0 + 2
∑∞

h=1 Γωh is positive definite. Moreover, we
can write ωt =

√
T (ΓωL0)1/2[Xω,T (t/T )−Xω,T ((t− 1)/T )]. As proved in Theorem 3.4 in Phillips

and Solo (1992) and Corollary 2.2 in Phillips and Durlauf (1986), for any τ ∈ [0, 1], we have, as
T →∞,

Xu,T (τ)
d→Wq(τ), Xω,T (τ)

d→Wr(τ), (A42)

where Wq(·) is a q-dimensional Brownian motion with covariance Iq and Wr(·) is an r-dimensional
Brownian motion with covariance Ir. Then consider the first term in parenthesis on the rhs of
(A41), as T →∞, using (A42), we have

1

T

T∑
t=1

( t∑
s=1

us

)
ω′t =

T∑
t=1

Xu

(
t

T

)(
Xω

(
t

T

)
−Xω

(
t− 1

T

))′(
ΓωL0

)1/2
(A43)

d→
(∫ 1

0
Wu(τ)

(Wω(τ)−Wω(τ − dτ))′

dτ
dτ
)(

ΓωL0

)1/2
=

(∫ 1

0
Wu(τ)dW′

ω(τ)

)(
ΓωL0

)1/2
.

As for the second term on the rhs of (A41), we have, using the same approach as for part (i), as
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T →∞, ∥∥∥∥ 1

T

T∑
t=1

ωtω
′
t − Γω0

∥∥∥∥ = Op

(
1√
T

)
. (A44)

By substituting (A43) and (A44) in (A41), and by Slutsky’s theorem, we complete the proof of
part (iv). Part (v) is proved analogously just by multiplying (A41) also on the left by β′.

Finally, for part (vi), using the same approach as in the proof of part (i), we have

1

T

T∑
t=1

∆FtF
′
t−1β =

(
1

T

T∑
t=1

C(1)utω
′
t−1 +

1

T

T∑
t=1

∆ωtω
′
t−1

)
=
(
Γω1 − Γω0

)
β +Op

(
1√
T

)
.

(A45)

This completes the proof. �

Lemma A6 Define F̌t = JFt and β̌ = Jβ. For any given t, under Assumptions 1 through 6, as
n, T →∞,
(i) ‖(Tn)−1Λ̂′ξtF̌

′
t‖ = Op(max(n−1/2, T−1/2));

(ii) ‖n−1Λ̂′∆ξt∆F̌′t‖ = Op(max(n−1/2, T−1/2));
(iii) ‖n−1Λ̂′∆ξtF̌

′
tβ̌‖ = Op(max(n−1/2, T−1/2));

(iv) ‖(T 1/2n)−1Λ̂′∆ξtF̌
′
t‖ = Op(max(n−1/2, T−1/2));

(v) ‖(T 1/2n)−1Λ̂′ξtF̌
′
tβ̌‖ = Op(max(n−1/2, T−1/2)).

(vi) ‖n−1Λ̂′ξt∆F̌′t‖ = Op(ζnT,δ);
(vii) ‖(T 1/2n)−1Λ̂′ξtF̌

′
t‖ = Op(ζnT,δ);

(viii) ‖n−1Λ̂′ξtF̌
′
tβ̌‖ = Op(ζnT,δ).

Proof. Throughout, we use ‖β‖ = O(1) and obviously ‖J‖ = 1, and subadditivity of the norm
(A1). Start with part (i):∥∥∥∥Λ̂′ξtF̌

′
t

nT

∥∥∥∥ ≤ ∥∥∥∥JΛ′ξtF
′
tJ

nT

∥∥∥∥+

∥∥∥∥(Λ̂′ − JΛ′)ξtF
′
tJ

nT

∥∥∥∥
≤
∥∥J∥∥2

∥∥∥∥Λ′ξt

n
√
T

∥∥∥∥ ∥∥∥∥ Ft√
T

∥∥∥∥+

∥∥∥∥Λ̂′ − JΛ′√
n

∥∥∥∥ ∥∥∥∥ ξt√
nT

∥∥∥∥ ∥∥∥∥ Ft√
T

∥∥∥∥ ∥∥J∥∥.
Then, because of Lemma A2(ii) and A2(vi), the first term on the rhs is Op(n−1/2). Because of
Lemma A2(ii) and A2(iv) and Lemma A3. This proves part (i).

For part (ii) we can repeat the same reasoning as for part (i), but using Lemma A2(i), A2(iii)
and A2(v), and Lemma A3. Part (iii) is proved by noticing that F̌′tβ̌ = F′tβ and by following
again the same reasoning as for part (i), but using Lemma A2(iii) and A2(iv), and Lemmas A3
and A4(ii). Part (iv) is also proved as part (i), but using Lemma A2(ii), A2(iii) and A2(v), and
Lemma A3. Part (v) is proved as part (i), but using Lemma A2(iv) and A2(vi), and Lemmas A3
and A4(ii).
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For part (vi), we have∥∥∥∥Λ̂′ξt∆F̌′t
n

∥∥∥∥ ≤ ∥∥∥∥JΛ′ξt∆F′tJ

n

∥∥∥∥+

∥∥∥∥(Λ̂′ − JΛ′)ξt∆F′tJ

n

∥∥∥∥
≤
∥∥J∥∥2

∥∥∥∥Λ′ξt
n

∥∥∥∥ ∥∥∆Ft

∥∥+

∥∥∥∥Λ̂′ − JΛ′√
n

∥∥∥∥ ∥∥∥∥ ξt√n
∥∥∥∥ ∥∥∆Ft

∥∥ ∥∥J∥∥.
From Lemma A2(i) and A2(viii), the first term on the rhs is Op(T 1/2n−(2−δ)/2). From Lemma
A2(i) and A2(vii) and Lemma A3, the second term on the rhs is Op(n−1(1−δ)/2). This proves
part (vi). Parts (vii) and (viii) are proved similarly to part (vi) using Lemma A2(ii), A2(vii) and
A2(viii), and Lemmas A3 and Lemma A4(ii). This completes the proof. �

Lemma A7 For any given t, under Assumptions 1 through 6, as n, T →∞,
(i) ‖(Tn2)−1Λ̂′ξtξ

′
tΛ̂‖ = Op(max(n−1, T−1));

(ii) ‖n−2Λ̂′∆ξt∆ξ
′
tΛ̂‖ = Op(max(n−1, T−1)).

(iii) ‖n−2Λ̂′ξtξ
′
tΛ̂‖ = Op(ζ

2
nT,δ);

(iv) ‖(T 1/2n2)−1Λ̂′ξtξ
′
tΛ̂‖ = Op(ζ

2
nT,δT

−1/2);
(v) ‖n−2Λ̂′∆ξtξ

′
tΛ̂‖ = Op(ζn,T max(n−1/2, T−1/2)).

Proof. Throughout, we use subadditivity of the norm (A1). Start with part (i):∥∥∥∥Λ̂′ξtξ
′
tΛ̂

n2T

∥∥∥∥ ≤ ∥∥∥∥Λ̂−ΛJ√
n

∥∥∥∥2 ∥∥∥∥ ξt√
nT

∥∥∥∥2

+ 2

∥∥∥∥Λ̂−ΛJ√
n

∥∥∥∥ ∥∥∥∥ ξt√
nT

∥∥∥∥ ∥∥∥∥Λ′ξt

n
√
T

∥∥∥∥+

∥∥∥∥Λ′ξt

n
√
T

∥∥∥∥2

.

Because of Lemma A2(iv) and Lemma A3, the first term on the rhs is Op(T−1). Because of
Lemma A2(iv) and A2(vi), and Lemma A3, the second term is Op(T−1/2n−1/2). The third term
is Op(n−1) because of Lemma A2(vi). This proves part (i). Part (ii) is proved in the same way,
but using Lemma A2(iii) and A2(v), and Lemma A3.

Now consider part (iii):∥∥∥∥Λ̂′ξtξ
′
tΛ̂

n2

∥∥∥∥ ≤ ∥∥∥∥Λ̂−ΛJ√
n

∥∥∥∥2 ∥∥∥∥ ξt√n
∥∥∥∥2

+ 2

∥∥∥∥Λ̂−ΛJ√
n

∥∥∥∥ ∥∥∥∥ ξt√n
∥∥∥∥ ∥∥∥∥Λ′ξt

n

∥∥∥∥+

∥∥∥∥Λ′ξt
n

∥∥∥∥2

. (A46)

Because of Lemma A2(vii) and Lemma A3, the first term on the rhs is Op(n−(1−δ)). Because of
Lemma A2(vii) and A2(viii), and Lemma A3, the second term is Op(T 1/2n−(3/2−δ)). The third
term is Op(Tn−(2−δ)) because of Lemma A2(viii). Summing up, for (A46), we have∥∥∥∥Λ̂′ξtξ

′
tΛ̂

n2

∥∥∥∥ ≤ Op( 1

n1−δ

)
+Op

( √
T

n3/2−δ

)
+Op

(
T

n2−δ

)
.

In order to compare the rates of the three terms assume n = O(Tα), then, according to Assumption
6(b), we must have at least α > 1/2. Now, when 1/2 < α < 1, the third term dominates over
the first one (see also (17)), but the second would dominate over the third if and only if α > 1,
which cannot be. When α ≥ 1, the first term dominates over the third one, and the second would
dominate over the first if and only if α < 1, which cannot be. Hence, the second one is always
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dominated by the other two and we proved part (iii). Part (iv) is proved by multiplying everything
in part (iii) by T−1/2.

For part (v), we have∥∥∥∥Λ̂′∆ξtξ
′
tΛ̂

n2

∥∥∥∥ ≤∥∥∥∥Λ̂−ΛJ√
n

∥∥∥∥2 ∥∥∥∥∆ξt√
n

∥∥∥∥ ∥∥∥∥ ξt√n
∥∥∥∥+

∥∥∥∥Λ′∆ξt
n

∥∥∥∥ ∥∥∥∥Λ′ξt
n

∥∥∥∥
+

∥∥∥∥Λ̂−ΛJ√
n

∥∥∥∥ ∥∥∥∥∆ξt√
n

∥∥∥∥ ∥∥∥∥Λ′ξt
n

∥∥∥∥+

∥∥∥∥Λ̂−ΛJ√
n

∥∥∥∥ ∥∥∥∥ ξt√n
∥∥∥∥ ∥∥∥∥Λ′∆ξt

n

∥∥∥∥.
Because of Lemma A2(iii) and A2(vii), and Lemma A3, the first term on the rhs isOp(T−1/2n−(1−δ)/2).
Because of Lemma A2(v) and A2(viii), and Lemma A3, the second term is Op(T 1/2n−(3−δ)/2).
Hence, using (17), the first two terms are Op(ζn,T max(n−1/2, T−1/2)). Using the same results as
for the first two terms, we have that the third and fourth terms are both Op(n−(2−δ)/2) and they
are both dominated by the first two and part (v) is proved. This completes the proof. �

Lemma A8 Define the matrices

M̂00 =
1

T

T∑
t=1

∆F̂t∆F̂′t, M̂01 =
1

T

T∑
t=1

∆F̂tF̂
′
t−1, M̂02 =

1

T

T∑
t=1

∆F̂t∆F̂′t−1,

M̂11 =
1

T

T∑
t=1

F̂tF̂
′
t, M̂21 =

1

T

T∑
t=1

∆F̂′t−1F̂t−1, M̂22 =
1

T

T∑
t=1

∆F̂t−1∆F̂′t−1,

and denote by Mij, for i, j = 0, 1, 2, the analogous ones but computed by using F̌t = JFt. Define
also β̌ = Jβ. Under Assumptions 1 through 6, as n, T →∞,
(i) ‖T−1M̂11 − T−1M11‖ = Op(n

−1/2, T−1/2);
(ii) ‖M̂00 −M00‖ = Op(n

−1/2, T−1/2);
(iii) ‖M̂02 −M02‖ = Op(n

−1/2, T−1/2);
(iv) ‖M̂22 −M22‖ = Op(n

−1/2, T−1/2).
(v) ‖M̂01β̌ −M01β̌‖ = Op(max(ζnT,δ, T

−1/2));
(vi) ‖β̌′M̂11β̌ − β̌′M11β̌‖ = Op(max(ζnT,δ, T

−1/2));
(vii) ‖M̂21β̌ −M21β̌‖ = Op(max(ζnT,δ, T

−1/2));
(viii) ‖T−1/2M̂01 − T−1/2M01‖ = Op(max(ζnT,δ, T

−1/2));
(ix) ‖T−1/2M̂21 − T−1/2M21‖ = Op(max(ζnT,δ, T

−1/2)).

Proof. Throughout, we use ‖β‖ = O(1) and obviously ‖J‖ = 1 and the fact that, from Lemma
A3 we also have ‖n−1Λ̂′Λ‖ = Op(1). Start with part (i). By adding and subtracting JFt from
F̂t, we have ∥∥∥∥ 1

T 2

T∑
t=1

F̂tF̂
′
t −

1

T 2

T∑
t=1

F̌tF̌
′
t

∥∥∥∥ ≤ ∥∥∥∥ 1

T 2

T∑
t=1

(
F̂t − JFt

)(
F̂t − JFt

)′∥∥∥∥
+ 2

∥∥∥∥ 1

T 2

T∑
t=1

(
F̂t − JFt

)(
JFt

)′∥∥∥∥. (A47)
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Using (6) and (15) , the first term on the rhs of (A47) gives∥∥∥∥ 1

T 2

T∑
t=1

(
F̂t − JFt

)(
F̂t − JFt

)′∥∥∥∥ =

∥∥∥∥ 1

T 2

T∑
t=1

(
Λ̂′xt
n
− JFt

)(
Λ̂′xt
n
− JFt

)′∥∥∥∥
=

∥∥∥∥ 1

T 2

T∑
t=1

(
Λ̂′ΛFt

n
+

Λ̂′ξt
n
− JFt

)(
Λ̂′ΛFt

n
+

Λ̂′ξt
n
− JFt

)′∥∥∥∥
≤
∥∥∥∥ 1

T 2

T∑
t=1

Λ̂′ΛFtF
′
t

n

(
Λ′Λ̂

n
− J

)
+ JFtF

′
t

(
J− Λ′Λ̂

n

)∥∥∥∥︸ ︷︷ ︸
A1

+ 2

∥∥∥∥ 1

T 2

T∑
t=1

Λ̂′ΛFtξ
′
tΛ̂

n2

∥∥∥∥︸ ︷︷ ︸
B1

+ 2

∥∥∥∥ 1

T 2

T∑
t=1

Λ̂′ξtF
′
tJ

n

∥∥∥∥︸ ︷︷ ︸
C1

+

∥∥∥∥ 1

T 2

T∑
t=1

Λ̂′ξtξ
′
tΛ̂

n2

∥∥∥∥︸ ︷︷ ︸
D1

. (A48)

Let us consider each term of (A48) separately:

A1 ≤
∥∥∥∥Λ′Λ̂

n
− J

∥∥∥∥ ∥∥∥∥ 1

T 2

T∑
t=1

FtF
′
t

∥∥∥∥
{∥∥∥∥Λ̂′Λ

n

∥∥∥∥+
∥∥J∥∥} = Op

(
1√
T

)
,

B1 ≤
2

T

T∑
t=1

∥∥∥∥Λ̂′ξtF
′
t

nT

∥∥∥∥ ∥∥∥∥Λ̂′Λ

n

∥∥∥∥ = Op

(
max

(
1√
n
,

1√
T

))
,

C1 ≤
2

T

T∑
t=1

∥∥∥∥Λ̂′ξtF
′
t

nT

∥∥∥∥ ∥∥J∥∥ = Op

(
max

(
1√
n
,

1√
T

))
,

D1 ≤
1

T

T∑
t=1

∥∥∥∥Λ̂′ξtξ
′
tΛ̂

n2T

∥∥∥∥ = Op

(
max

(
1

n
,

1

T

))
.

Above we used, Lemma A3 and Lemma A5(ii) for A1, Lemma A6(i) for B1 and C1, and Lemma
A7(i) for D1. Thus, the first term on the rhs of (A47) is Op(max(n−1/2, T−1/2)). The second term
on the rhs of (A47) is such that∥∥∥∥ 1

T 2

T∑
t=1

(
F̂t − JFt

)(
JFt

)′∥∥∥∥ =

∥∥∥∥ 1

T 2

T∑
t=1

(Λ̂′xt
n
− JFt

)(
JFt

)′∥∥∥∥
≤
∥∥∥∥ 1

T 2

T∑
t=1

(
Λ̂′Λ

n
− J

)
FtF

′
tJ

∥∥∥∥+

∥∥∥∥ 1

T 2

T∑
t=1

Λ̂′ξtF
′
tJ

n

∥∥∥∥
≤
∥∥∥∥Λ̂′Λ

n
− J

∥∥∥∥ ∥∥∥∥ 1

T 2

T∑
t=1

FtF
′
t

∥∥∥∥ ∥∥J∥∥+
1

T

T∑
t=1

∥∥∥∥Λ̂′ξtF
′
tJ

nT

∥∥∥∥ = Op

(
max

(
1√
n
,

1√
T

))
, (A49)

where we used Lemmas A3, A5(ii) and A6(i). By combining (A48) and (A49) we prove part (i).
Parts (ii), (iii) and (iv) are proved in the same way as part (i), using Lemma A3 and the results
for the stationary process ∆Ft in Lemmas A5(i), A6(ii), and A7(ii).
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Now, consider part (v):∥∥∥∥ 1

T

T∑
t=1

∆F̂tF̂
′
t−1β̌ −

1

T

T∑
t=1

∆F̌tF̌
′
t−1β̌

∥∥∥∥ ≤ ∥∥∥∥ 1

T

T∑
t=1

(
∆F̂t − J∆Ft

)(
F̂t−1 − JFt−1

)′
β̌

∥∥∥∥
+

∥∥∥∥ 1

T

T∑
t=1

(
∆F̂t − J∆Ft

)(
β̌′JFt−1

)′∥∥∥∥+

∥∥∥∥ 1

T

T∑
t=1

(
J∆Ft

)(
F̂t−1 − JFt−1

)′
β̌

∥∥∥∥. (A50)

Similarly to (A48), from (6) and (15), the first term on the rhs of (A50) is such that∥∥∥∥ 1

T

T∑
t=1

(
∆F̂t − J∆Ft−1

)(
β̌′F̂t−1 − β̌′JFt−1

)′∥∥∥∥ =

∥∥∥∥ 1

T

T∑
t=1

(
Λ̂′∆xt
n

− J∆Ft

)(
Λ̂′xt−1

n
− JFt−1

)′
β̌

∥∥∥∥
≤
∥∥∥∥ 1

T

T∑
t=1

Λ̂′Λ∆FtF
′
t−1

n

(
Λ′Λ̂

n
− J

)
β̌ + J∆FtF

′
t−1

(
J− Λ′Λ̂

n

)
β̌

∥∥∥∥︸ ︷︷ ︸
A2

+

∥∥∥∥ 1

T

T∑
t=1

Λ̂′Λ∆Ftξ
′
t−1Λ̂β̌

n2

∥∥∥∥︸ ︷︷ ︸
B2

+

∥∥∥∥ 1

T

T∑
t=1

Λ̂′∆ξtF
′
t−1Λ

′Λ̂β̌

n2

∥∥∥∥︸ ︷︷ ︸
C2

+

∥∥∥∥ 1

T

T∑
t=1

J∆Ftξ
′
t−1Λ̂β̌

n

∥∥∥∥︸ ︷︷ ︸
D2

+

∥∥∥∥ 1

T

T∑
t=1

Λ̂′∆ξtF
′
t−1Jβ̌

n

∥∥∥∥︸ ︷︷ ︸
E2

+

∥∥∥∥ 1

T

T∑
t=1

Λ̂′∆ξtξ
′
t−1Λ̂β̌

n2

∥∥∥∥︸ ︷︷ ︸
F2

. (A51)

Let us consider first the terms:

A2 ≤
∥∥∥∥Λ′Λ̂

n
− J

∥∥∥∥ ∥∥∥∥ 1

T

T∑
t=1

∆FtF
′
t−1

∥∥∥∥
{∥∥∥∥Λ̂′Λ

n

∥∥∥∥+
∥∥J∥∥} ∥∥β̌∥∥ = Op

(
1√
T

)
,

B2 ≤
1

T

T∑
t=1

∥∥∥∥Λ̂′ξt−1∆F′t
n

∥∥∥∥ ∥∥∥∥Λ̂′Λ

n

∥∥∥∥ ∥∥β̌∥∥ = Op(ζnT,δ),

F2 ≤
1

T

T∑
t=1

∥∥∥∥Λ̂′∆ξtξ
′
t−1Λ̂

n2

∥∥∥∥ ∥∥β̌∥∥ = Op

(
ζnT,δ max

(
1√
n
,

1√
T

))
,

Above we used, Lemmas A3 and A5(iii) for A2, Lemma A6(vi) for B2, and Lemma A7(v) for F2.
The term D2 behaves exactly as B2, while E2 is Op(max(n−1/2, T−1/2)) because of Lemma A6(iii).
Finally, recall that from Lemma A3, we also have

Λ′Λ̂

n
= J +Op

(
1√
T

)
. (A52)
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Hence, from (A52),

C2 ≤
1

T

T∑
t=1

∥∥∥∥Λ̂′∆ξtF
′
t−1Jβ̌

n

∥∥∥∥+
1

T

T∑
t=1

∥∥∥∥Λ̂′∆ξtF
′
t−1

n

∥∥∥∥ Op( 1√
T

)
= Op

(
max

(
1√
n
,

1√
T

))
.

Indeed, the first term on the rhs of C2 is Op(max(n−1/2, T−1/2)) because of Lemma A6(iii), while
the second term is Op(max(n−1/2, T−1/2)) because of Lemma A6(iv). Therefore, the first term on
the rhs of (A50) is Op(max(ζnT,δ, T

−1/2)).
As for the second term on the rhs of (A50), since β̌′JFt−1 = β′Ft−1, we have∥∥∥∥ 1

T

T∑
t=1

(
∆F̂t − J∆Ft

)(
β̌′JFt−1

)′∥∥∥∥ =

∥∥∥∥ 1

T

T∑
t=1

(
Λ̂′∆xt
n

− J∆Ft

)(
β′Ft−1

)′∥∥∥∥
≤
∥∥∥∥ 1

T

T∑
t=1

(
Λ̂′Λ

n
− J

)
∆FtF

′
t−1β

∥∥∥∥+

∥∥∥∥ 1

T

T∑
t=1

Λ̂′∆ξtF̌
′
t−1β̌

n

∥∥∥∥ = Op

(
max

(
1√
n
,

1√
T

))
, (A53)

where we used Lemmas A3 and A5(vi) for the first term on the rhs and Lemma A6(iii) for the
second.

The third term on the rhs of (A50) is such that∥∥∥∥ 1

T

T∑
t=1

(
J∆Ft

)(
F̂t−1 − JFt−1

)′
β̌

∥∥∥∥ =

∥∥∥∥ 1

T

T∑
t=1

(
J∆Ft

)(Λ̂′xt−1

n
− JFt−1

)′
β̌

∥∥∥∥
≤
∥∥∥∥ 1

T

T∑
t=1

J∆FtF
′
t−1

(
Λ′Λ̂

n
− J

)
β̌

∥∥∥∥+

∥∥∥∥ 1

T

T∑
t=1

J∆Ftξ
′
t−1Λ̂β̌

n

∥∥∥∥ = Op(ζnT,δ), (A54)

since the first term on the rhs behaves exactly as A2 above, while the second term is Op(ζnT,δ) as
in B2. By combining (A51), (A53), and (A54) we prove part (v).

Then consider part (vi):∥∥∥∥ 1

T

T∑
t=1

β̌′F̂tF̂
′
tβ̌ −

1

T

T∑
t=1

β̌′F̌tF̌
′
tβ̌

∥∥∥∥ ≤ ∥∥∥∥ 1

T

T∑
t=1

β̌′
(
F̂t − JFt

)(
F̂t − JFt

)′
β̌

∥∥∥∥
+ 2

∥∥∥∥ 1

T

T∑
t=1

β̌′
(
F̂t − JFt

)(
β̌′JFt

)′∥∥∥∥. (A55)
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As before, from (6) and (15), the first term on the rhs of (A55) is such that∥∥∥∥ 1

T

T∑
t=1

β̌′
(
F̂t − JFt

)(
F̂t − JFt

)′
β̌

∥∥∥∥ =

∥∥∥∥ 1

T

T∑
t=1

β̌′
(

Λ̂′xt
n
− JFt

)(
Λ̂′xt
n
− JFt

)′
β̌

∥∥∥∥
≤
∥∥∥∥ 1

T

T∑
t=1

β̌′Λ̂′ΛFtF
′
t

n

(
Λ′Λ̂

n
− J

)
β̌ + β̌′JFtF

′
t

(
J− Λ′Λ̂

n

)
β̌

∥∥∥∥︸ ︷︷ ︸
A3

+ 2

∥∥∥∥ 1

T

T∑
t=1

β̌′Λ̂′ΛFtξ
′
tΛ̂β̌

n2

∥∥∥∥︸ ︷︷ ︸
B3

+ 2

∥∥∥∥ 1

T

T∑
t=1

β̌′JFtξ
′
tΛ̂β̌

n

∥∥∥∥︸ ︷︷ ︸
C3

+

∥∥∥∥ 1

T

T∑
t=1

β̌′Λ̂′ξtξ
′
tΛ̂β̌

n2

∥∥∥∥︸ ︷︷ ︸
D3

. (A56)

Since β̌′JFt = β′Ft and using (A52), we have,

A3 ≤
∥∥∥∥ 1

T

T∑
t=1

β′FtF
′
t

(
Λ′Λ̂

n
− J

)
β̌

∥∥∥∥+

∥∥∥∥ 1

T

T∑
t=1

β̌′FtF
′
t

(
Λ′Λ̂

n
− J

)
β̌

∥∥∥∥ Op( 1√
T

)

+

∥∥∥∥ 1

T

T∑
t=1

β′FtF
′
t

(
J− Λ′Λ̂

n

)
β̌

∥∥∥∥ = Op

(
1√
T

)
.

Indeed, the first and third terms on the rhs are Op(T−1/2) because of Lemmas A3 and Lemma
A5(v), while using the same results and (A52), the second term is∥∥∥∥ 1

T

T∑
t=1

β̌′FtF
′
t

(
Λ′Λ̂

n
− J

)
β̌

∥∥∥∥ Op( 1√
T

)
=

∥∥∥∥ 1

T

T∑
t=1

β̌′FtF
′
t

(
Λ′Λ̂J

n
− JJ

)
Jβ̌

∥∥∥∥ Op( 1√
T

)

=

∥∥∥∥ 1

T

T∑
t=1

β̌′FtF
′
tβ

∥∥∥∥ Op( 1

T

)
= Op

(
1

T

)
.

In the same way we have

B3 ≤ 2

∥∥∥∥ 1

T

T∑
t=1

β̌′JFtξ
′
tΛ̂β̌

n

∥∥∥∥+ 2

∥∥∥∥ 1

T

T∑
t=1

β̌′Ftξ
′
tΛ̂β̌

n

∥∥∥∥ Op( 1√
T

)
= Op(ζnT,δ),

because of Lemma A6(vii) and A6(viii). Then,

C3 ≤
2

T

T∑
t=1

∥∥∥∥ β̌′JFtξ
′
tΛ̂

n

∥∥∥∥ ∥∥β̌∥∥ = Op(ζnT,δ),

D3 ≤
1

T

T∑
t=1

∥∥∥∥Λ̂′ξtξ
′
tΛ̂

n2

∥∥∥∥ ∥∥β̌∥∥2
= Op(ζ

2
nT,δ),

because of Lemmas A6(viii) and A7(iii). Therefore, since from Assumption 6(b), ζ2
nT,δ < ζnT,δ as

n, T →∞, the first term on the rhs of (A55) is Op(ζnT,δ).
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The second term on the rhs of (A55) is such that

2

∥∥∥∥ 1

T

T∑
t=1

β̌′
(
F̂t − JFt

)(
β̌′JFt

)′∥∥∥∥ = 2

∥∥∥∥ 1

T

T∑
t=1

β̌′
(Λ̂′xt

n
− JFt

)(
β̌′JFt

)′∥∥∥∥
≤2

∥∥∥∥ 1

T

T∑
t=1

(
Λ̂′Λ

n
− J

)
FtF

′
tJβ̌

∥∥∥∥+ 2

∥∥∥∥ 1

T

T∑
t=1

Λ̂′ξtF
′
tJβ̌

n

∥∥∥∥ = Op

(
max

(
ζnT,δ,

1√
T

))
, (A57)

because of Lemmas A3, A5(iv) and A6(viii). By combining (A56) and (A57), we prove part (vi).
Finally, parts (vii), (viii) and (ix) are proved as part (v), by noticing that ‖T−1/2Ft‖ = Op(1),
because of Lemma A2(ii). This completes the proof. �

Lemma A9 Define the matrices

Ŝ00 = M̂00 − M̂02M̂
−1
22 M̂20, Ŝ01 = M̂01 − M̂02M̂

−1
22 M̂21, Ŝ11 = M̂11 − M̂12M̂

−1
22 M̂21,

where M̂10 = M̂′
01, M̂20 = M̂′

02, and M̂12 = M̂′
21. Denote by Sij, for i, j = 0, 1, the analogous

ones but computed by using F̌t = JFt. Define also β̌ = Jβ and β̌⊥∗ = β̌⊥(β̌′⊥β̌⊥)−1, where
β̌⊥ = Jβ⊥ such that β̌′⊥β̌ = 0r−c×r. Under Assumptions 1 through 6, as n, T →∞,

(i) ‖Ŝ00 − S00‖ = Op(max(n−1/2, T−1/2)).
(ii) ‖β̌′Ŝ11β̌ − β̌′S11β̌‖ = Op(max(ζnT,δ, T

−1/2));
(iii) ‖T−1/2β̌′Ŝ11β̌⊥∗ − T−1/2β̌′S11β̌⊥∗‖ = Op(max(ζnT,δ, T

−1/2));
(iv) ‖T−1/2β̌′Ŝ10Ŝ

−1
00 Ŝ01β̌⊥∗ − T−1/2β̌′S10S

−1
00 S01β̌⊥∗‖ = Op(max(ζnT,δ, T

−1/2));
(v) ‖T−1β̌′⊥∗Ŝ10Ŝ

−1
00 Ŝ01β̌⊥∗ − T−1β̌′⊥∗S10S

−1
00 S01β̌⊥∗‖ = Op(max(ζnT,δ, T

−1/2));
(vi) ‖T−1β̌′⊥∗Ŝ11β̌⊥∗ − T−1β̌′⊥∗S11β̌⊥∗‖ = Op(max(ζnT,δ, T

−1/2)).

Proof. Throughout we use the fact that ‖β̌⊥∗‖ = O(1). Part (i) is proved using Lemma A8(ii),
A8(iii) and A8(iv). For proving part (ii) we use Lemma A8(iv), A8(v) and A8(vi). Part (iii) is
proved by combining part (ii) with Lemma A8(v) and A8(vi), and by noticing that ‖T−1/2Ft‖ =
Op(1) from Lemma A2(ii). For proving part (iv) we combine part (i) with Lemma A8(v), A8(viii)
and A8(ix). Part (v) is proved by combining part (i) with Lemma A8(viii) and A8(ix). Finally,
part (vi) follows from Lemma A8(i) and A8(ix). This completes the proof. �

Lemma A10 Consider the matrices Sij defined in Lemma A9, with i, j = 0, 1. Define F̌t = JFt,
β̌ = Jβ and the conditional covariance matrices

Ω̌00 = E[∆F̌t∆F̌′t|∆F̌t−1], Ω̌β̌β̌ = E[β̌′F̌t−1F̌
′
t−1β̌|∆F̌t−1], Ω̌0β̌ = E[∆F̌tF̌

′
t−1β̌|∆F̌t−1].

Under Assumptions 1, 4 and 5, as T →∞,
(i) ‖S00 − Ω̌00‖ = Op(T

−1/2);
(ii) ‖β̌′S11β̌ − Ω̌β̌β̌‖ = Op(T

−1/2);
(iii) ‖S01β̌ − Ω̌0β̌‖ = Op(T

−1/2).
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Proof. For part (i), notice that

Ω̌00 = E[∆F̌t∆F̌′t]− E[∆F̌t∆F̌′t−1]
(
E[∆F̌t−1∆F̌′t−1]

)−1
E[∆F̌t−1∆F̌′t]

= Γ∆F
0 − Γ∆F

1

(
Γ∆F

0

)−1
Γ∆F

1 ,

and

S00 =
1

T

T∑
t=1

∆F̌t∆F̌′t −
(

1

T

T∑
t=2

∆F̌t∆F̌′t−1

)(
1

T

T∑
t=2

∆F̌t−1∆F̌′t−1

)−1 1

T

T∑
t=2

∆F̌t−1∆F̌′t

= M00 −M02M
−1
22 M20.

Using Lemma A5(i), we have the result. Parts ( ii) and (iii) are proved in the same way, but using
Lemma A5(v) and A5(vi), respectively. This completes the proof. �

Proof of Lemma 4

Throughout we make use of the matrices M̂ij and Mij , with i, j = 0, 1, 2, defined in Lemma A8,
Ŝij and Sij , with i, j = 0, 1, defined in Lemma A9, and the conditional covariances Ω̌00, Ω̌β̌β̌ and
Ω̌0β̌ defined in Lemma A10. Define also Ω̌β̌0 = Ω̌′

0β̌
. Finally, we denote as β̌ = Jβ the matrix of

cointegration vectors of F̌t = JFt and its orthogonal complement as β̌⊥, such that β̌′⊥β̌ = 0r−c×c.

Let us start from part (i). Notice that if we denote the residuals of the regression of ∆F̂t

and of F̂t−1 on ∆F̂t−1 as ê0t and ê1t, respectively then Ŝij = T−1
∑T

t=1 êitê
′
jt, with i, j = 0, 1.

Consider the generalized eigenvalues problem

det
(
µ̂jŜ11 − Ŝ10Ŝ

−1
00 Ŝ01

)
= 0, j = 1, . . . , r. (A58)

If Û are the normalized eigenvectors of Ŝ
−1/2
11 Ŝ10Ŝ

−1
00 Ŝ01Ŝ

−1/2
11 , then P̂ = Ŝ

−1/2
11 Û are eigenvectors

of Ŝ11− Ŝ10Ŝ
−1
00 Ŝ01 with eigenvalues µ̂j . Then, the estimator β̂ proposed by Johansen (1991, 1995)

is given by the c columns of P̂ corresponding to the c largest eigenvalues.
Analogously define Û0 as the normalized eigenvectors of S

−1/2
11 S10S

−1
00 S01S

−1/2
11 and define

P̂0 = S
−1/2
11 Û0. Then the estimator β̂0 that we would obtain if estimating a VECM on F̌t, is the

matrix of the c columns of P̂0, corresponding to the c largest eigenvalues µ̂0
j of S11 − S10S

−1
00 S01,

and such that
det
(
µ̂0
jS11 − S10S

−1
00 S01

)
= 0, j = 1, . . . , r. (A59)

Notice that by definition the two estimators β̂ and β̂0 are normalized in such a way that β̂′Ŝ11β̂ =
Ic and β̂0′S11β̂

0 = Ic.
Consider then the r × r matrix

AT =

(
β̌
β̌⊥∗√
T

)
,
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where β̌⊥∗ = β̌⊥(β̌′⊥β̌⊥)−1, and consider the equations

det
[
A′T
(
µ̂jŜ11 − Ŝ10Ŝ

−1
00 Ŝ01

)
AT

]
= 0, j = 1, . . . , r, (A60)

det
[
A′T
(
µ̂0
jS11 − S10S

−1
00 S01

)
AT

]
= 0, j = 1, . . . , r. (A61)

Clearly (A60) has the same solutions as (A58), but its eigenvectors are now given by A−1
T P̂ and

those corresponding to the largest c eigenvalues are A−1
T β̂. Analogously for (A61) we have the

eigenvectors A−1
T P̂0 and the c largest are given by A−1

T β̂
0. Moreover,

A′T
(
Ŝ11 − Ŝ10Ŝ

−1
00 Ŝ01

)
AT

=

[
β̌′Ŝ11β̌ T−1/2β̌′Ŝ11β̌⊥∗

T−1/2β̌′⊥∗Ŝ11β̌ T−1β̌′⊥∗Ŝ11β̌⊥∗

]
−

[
β̌′Ŝ10Ŝ

−1
00 Ŝ01β̌ T−1/2β̌′Ŝ10Ŝ

−1
00 Ŝ01β̌⊥∗

T−1/2β̌′⊥∗Ŝ10Ŝ
−1
00 Ŝ01β̌ T−1β̌′⊥∗Ŝ10Ŝ

−1
00 Ŝ01β̌⊥∗

]

=

[
β̌′S11β̌ T−1/2β̌′S11β̌⊥∗

T−1/2β̌′⊥∗S11β̌ T−1β̌′⊥∗S11β̌⊥∗

]
−
[

β̌′S10S
−1
00 S01β̌ T−1/2β̌′S10S

−1
00 S01β̌⊥∗

T−1/2β̌′⊥∗S10S
−1
00 S01β̌ T−1β̌′⊥∗S10S

−1
00 S01β̌⊥∗

]
+Op(ϑnT,δ)

= A′T
(
S11 − S10S

−1
00 S01

)
AT +Op(ϑnT,δ). (A62)

This result is proved by using Lemma A9(ii), A9(iii) and A9(vi) for the first term on the rhs,
and by using Lemma A9(i), A9(iv) and A9(v) for the second term. Thus, from (A62), for any
j = 1, . . . , r, from Weyl’s inequality (A3), we have∣∣µ̂j − µ̂0

j

∣∣ ≤ ∥∥A′T (Ŝ11 − Ŝ10Ŝ
−1
00 Ŝ01

)
AT −A′T

(
S11 − S10S

−1
00 S01

)
AT

∥∥ = Op(ϑnT,δ). (A63)

Moreover, always from (A62) and similarly to (A27), it can be shown that, by Theorem 2 in
Yu et al. (2015), we have (notice that µ̂0

j are all positive since they are eigenvalues of a positive
definite matrix) ∥∥A−1

T P̂−A−1
T P̂0Jr

∥∥ = Op(ϑnT,δ), (A64)

where Jr is a diagonal r × r matrix with entries 1 or −1, different from J.
Then, from Lemmas A5(ii) and A10, (A62), and Slutsky’s theorem, as n, T → ∞, we have

(see also Lemma 13.1 in Johansen, 1995)

det

[
A′T

(
µ̂jŜ11 − Ŝ10Ŝ

−1
00 Ŝ01

)
AT

]
= det

[
A′T

(
µ̂0
jS11 − S10S

−1
00 S01

)
AT

]
+Op(ϑnT,δ) (A65)

d→det

(
µ̂0
jΩ̌β̌β̌ − Ω̌β̌0Ω̌

−1
00 Ω̌0β̌

)
det

[
µ̂0
j β̌
′
⊥∗

(
Γ∆F
L0

)1/2
(∫ 1

0
Wr(τ)W′

r(τ)dτ
)(

Γ∆F
L0

)1/2
β̌⊥∗

]
.

where Wr(·) is an r-dimensional Brownian motion with covariance of rank q−d = r−c. The first
term on the rhs of (A65) has only c solutions different from zero (the matrix is positive definite)
while the remaining r − c solutions come from the second term and are all zero. Therefore, as
n, T →∞ both A−1

T P̂ and A−1
T P̂0 span a space of dimension c given by their first c eigenvectors.
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This, jointly with (A64), implies that the two spaces coincide asymptotically∥∥A−1
T β̂ −A−1

T β̂
0Jc
∥∥ = Op(ϑnT,δ). (A66)

where Jc is a c× c diagonal matrix with entries 1 or −1, different from J and Jr.
Now, by projecting β̂ onto the space spanned by (β̌, β̌⊥), we can write

β̂ = β̌(β̌′β̌)−1β̌′β̂ + β̌⊥(β̌′⊥β̌⊥)−1β̌′⊥β̂ = β̌β̌′∗β̂ + β̌⊥∗β̌
′
⊥β̂

where, β̌∗ = β̌(β̌′β̌)−1 and β̌⊥∗ = β̌⊥(β̌′⊥β̌⊥)−1. Analogously we have a similar projection for β̂0

and we define the transformed estimators

β̃ = β̂(β̌′∗β̂)−1 = β̌ + β̌⊥∗β̌
′
⊥β̃, β̃0 = β̂0(β̌′∗β̂

0)−1 = β̌ + β̌⊥∗β̌
′
⊥β̃

0. (A67)

From Lemma 13.1 in Johansen (1995), we have (recall that β̌′⊥β̌ = 0r−c×c)

A−1
T β̃

0 = A−1
T

(
β̌ + β̌⊥∗β̌

′
⊥β̃

0
)

=

(
Ic√

T β̌′⊥β̃
0

)
=

(
Ic√

T β̌′⊥(β̃0 − β̌)

)
=

(
Ic

op(1)

)
, (A68)

since A−1
T β̃

0 spans a space of dimension c. In the same way, we have

A−1
T β̃ =

(
Ic√
T β̌′⊥β̃

)
=

(
Ic√

T β̌′⊥(β̃ − β̌)

)
=

(
Ic√

T β̌′⊥(β̃0 − β̌) +
√
T β̌′⊥(β̃ − β̃0)

)
.

(A69)
Now since sp(A−1

T β̃) = sp(A−1
T β̂), also (A69) spans a space of dimension c. Then by comparing

(A68) and (A69), and using (A66), and since also sp(A−1
T β̃

0) = sp(A−1
T β̂

0), we have∥∥√T β̌′⊥(β̃ − β̃0)
∥∥ =

∥∥A−1
T β̃ −A−1

T β̃
0
∥∥ = Op(ϑnT,δ). (A70)

Therefore, given that ‖β̌′⊥‖ = O(1) and given (A68) and (A70), we have

∥∥β̃ − β̌∥∥ ≤ ∥∥β̃0 − β̌
∥∥+

∥∥β̃0 − β̃
∥∥ = op

(
1√
T

)
+Op

(
ϑnT,δ√
T

)
. (A71)

From (A67), we can always define a c × c orthogonal matrix Q such that β̃Q = β̂ (see also
pp.179-180 in Johansen, 1995, for a discussion about the choice of the identification matrix Q).
Therefore, we have ∥∥β̂ − β̌Q

∥∥ = Op

(
ϑnT,δ√
T

)
,

which completes the proof of part (i).
Once we have β̂, the other parameters are estimated by linear regression as

α̂ = Ŝ01β̂
(
β̂′Ŝ11β̂

)−1
, Ĝ1 =

(
M̂02 − α̂β̂′M̂12

)
M̂−1

22 . (A72)

For part (ii), first notice that, by definition from a VECM for Ft we have

α = E[∆FtF
′
t−1β|∆Ft−1]

(
E[β′FtF

′
t−1β|∆Ft−1]

)−1
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Therefore, since conditioning on ∆Ft−1 is equivalent to conditioning on J∆Ft−1 = ∆F̌t−1 and
β′Ft = β̌′F̌t, we immediately have

α̌ = Hα =HE[∆FtF̌
′
t−1β̌|∆F̌t−1]

(
E[β̌′F̌tF̌

′
t−1β̌|∆F̌t−1]

)−1

=E[∆F̌tF̌
′
t−1β̌|∆F̌t−1]

(
E[β̌′F̌tF̌

′
t−1β̌|∆F̌t−1]

)−1
= Ω̌

0β̌
Ω̌−1
β̌β̌
.

Then,∥∥Ŝ01β̂ − Ω̌
0β̌

Q
∥∥ ≤∥∥Ŝ01(β̂ − β̌Q)

∥∥+
∥∥Ŝ01β̌Q− S01β̌Q

∥∥+
∥∥S01β̌Q− Ω̌0β̌Q

∥∥ = Op(ϑnT,δ),

(A73)

using part (i) and the fact that ‖Ŝ01‖ = Op(T
1/2) for the first term on the rhs, Lemma A9(iv) for

the second term, and Lemma A10(iii) for the third term. Analogously we have∥∥β̂′Ŝ11β̂ −Q′Ω̌
β̌β̌

Q
∥∥ ≤∥∥(β̂′ −Q′β̌′)Ŝ11(β̂ − β̌Q)

∥∥+
∥∥Q′β̌′Ŝ11β̌Q−Q′β̌′S11β̌Q

∥∥
+
∥∥Q′β̌′S11β̌Q−Q′Ω̌β̌β̌Q

∥∥ = Op(ϑnT,δ), (A74)

using part (i) and the fact that ‖Ŝ11‖ = Op(T ) for the first term, Lemma A9(ii) for the second
term, and Lemma A10(ii) for the third term. Therefore, from (A72), (A73), and (A74), and since
Q is orthogonal, we have ∥∥α̂− α̌Q

∥∥ = Op(ϑnT,δ),

which proves part (ii).
For part (iii), notice that, by definition, we have:

Ǧ1 = HG1H
′ =

(
Γ∆F̌

1 − α̌E[β̌′F̌t−1∆F̌′t−1]
)
(Γ∆F̌

0 )−1. (A75)

Then, from (A72),∥∥Ĝ1 − Ǧ1

∥∥ ≤∥∥(M̂02 − α̂β̂′M̂12

)
M̂−1

22 −
(
M̂02 − α̌β̌′M̂12

)
M̂−1

22

∥∥
+
∥∥(M̂02 − α̌β̌′M̂12

)
M̂−1

22 −
(
M02 − α̌β̌′M12

)
M−1

22

∥∥
+
∥∥(M02 − α̌β̌′M12

)
M−1

22 −
(
Γ∆F̌

1 − α̌E[β̌′F̌t−1∆F̌′t−1]
)
(Γ∆F̌

0 )−1
∥∥ = Op(ϑnT,δ),

since the first term on the rhs is Op(ϑnT,δ) by parts (i) and (ii) and since α̌QQ′β̌′ = α̌β̌′, the
second term is Op(ϑnT,δ) by Lemma A8(i), A8(iv) and A8(vii), and the third term is Op(T−1/2)
by Lemmas A1 and A5(vi), and in particular by (A12) and (A45). This, together with (A75),
proves part (iii).

Finally, for part (iv), first notice that the sample covariance of the VECM residuals ŵt =
∆F̂t − α̂β̂′F̂t−1 − Ĝ1∆F̂t−1 is also written as

Γ̂w0 =
1

T

T∑
t=1

ŵtŵ
′
t =

1

T

T∑
t=1

(∆F̂t − α̂β̂′F̂t−1 − Ĝ1∆F̂t−1)(∆F̂t − α̂β̂′F̂t−1 − Ĝ1∆F̂t−1)′

=M̂00 + α̂β̂′M̂11β̂α̂
′ + Ĝ1M̂22Ĝ

′
1 − M̂01β̂α̂

′ − α̂β̂′M̂12Ĝ
′
1 − α̂β̂′M̂10 − Ĝ1M̂20 − Ĝ1M̂21β̂α̂

′.
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Then from parts (i), (ii) and (iii), Lemma A8(ii) through A8(vii), and Lemma A5(i) and A5(vi),
we can prove that ∥∥Γ̂w0 − JΓw0 J

∥∥ = Op(ϑnT,δ), (A76)

where Γw0 = E
[
wtw

′
t

]
= E

[
(∆Ft −αβ′Ft−1 −G1∆Ft−1)(∆Ft −αβ′Ft−1 −G1∆Ft−1)′

]
.

Notice that by (16), we have wt = Kut, therefore, since the shocks ut are orthonormal by
Assumption 4, we have Γw0 = KK′. Moreover, from Assumption 1 and the model given in (8),
K = C(0) = Q(0) has rank q and so Γw0 has also rank q. We denote as µwj the eigenvalues of Γw0 ,
thus µwj = 0 if and only if j > q. These are also eigenvalues of JΓw0 J. As a consequence, having
defined as µ̂wj the eigenvalues of Γ̂w0 , from (A76) and Weyl’s inequality (A3), we have∣∣µ̂wj − µwj ∣∣ ≤ ∥∥Γ̂w0 − JΓw0 J

∥∥ = Op(ϑnT,δ), j = 1, . . . , q. (A77)

If we denote by Wq the r×q matrix of non-zero normalised eigenvectors of Γw0 , then JWq are the
normalised eigenvectors of JΓw0 J. We denote as Ŵq the r × q matrix of normalised eigenvectors
of Γ̂w0 . Then, from (A76) by Theorem 2 in Yu et al. (2015), we can prove that∥∥Ŵq − JWqJq

∥∥ = Op(ϑnT,δ), (A78)

where Jq is a diagonal q × q matrix with entries 1 or -1, different from J. Notice that JWqJq

are also normalised eigenvectors of JΓw0 J. From, the definition of K̂ = ŴqD̂
−1/2
q and (A77) and

(A78), we have ∥∥K̂− JWqJqD
−1/2
q

∥∥ = Op(ϑnT,δ), (A79)

where Dq is a diagonal matrix with entries µwj for j = 1, . . . , q and Wq contains the corresponding

eigenvectors. For any q × q orthogonal matrix R such that K = WqJqD
−1/2
q R, by substituting

in (A79), we have the result. Notice that K′Γw0 K = Iq as requested by Assumption 1(a) of
orthonormality of the shocks. This completes the proof. �

A.5 Proof of Proposition 1
The estimated VECM with p = 1 can always be written as a VAR(2) with estimated matrix
polynomial, ÂVECM(L) = Ir− ÂVECM

1 L− ÂVECM
2 L2, where ÂVECM

1 = Ĝ1 + α̂β̂′+ Ir, and ÂVECM
2 =

−Ĝ1. Then, from Lemma 4(i), 4(ii) and 4(iii), we have, for k = 1, 2,∥∥ÂVECM
k − JAkJ

∥∥ = Op(ϑnT,δ). (A80)

Define the infinite matrix polynomial

B̂(L) =
[
ÂVECM(L)

]−1
= (Ir − ÂVECM

1 L− ÂVECM
2 L2)−1 =

∞∑
k=0

B̂kL
k,

such that B̂(0) = Ir, B̂1 = ÂVECM
1 , B̂2 = (ÂVECM

1 B̂1 + ÂVECM
2 ), B̂3 = (ÂVECM

1 B̂2 + ÂVECM
2 B̂1),

and so on. Then, from (A80), we have, for any k ≥ 0,∥∥B̂k − JBkJ
∥∥ = Op(ϑnT,δ). (A81)
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The estimated impulse response of variable i is then a q-dimensional row vector defined as (see
(21))

φ̂VECM′
i (L) = λ̂′iB̂(L)K̂R̂′,

where λ̂′i is the i-th row of Λ̂.
The matrix R is estimated by R̂ ≡ R̂(Λ̂, ÂVECM(L), K̂). To estimate this mapping we have to

impose q(q+1)/2 restrictions on the IRFs, i.e. at most only on q(q+1)/2 variables. So R̂ depends
only on q(q + 1)/2 rows of Λ̂ and for regular identification schemes, such that this mapping is
analytical, using Lemmas 3(i) and 4(iv), and (A80), we have (see Forni et al., 2009)∥∥R̂−R

∥∥ = Op(ϑnT,δ). (A82)

Finally, from Lemma 3(i), we have, for any i ∈ N,

∥∥λ̂′i − λ′iH′∥∥ = Op

(
max

(
1√
T
,

1√
n

))
. (A83)

Therefore, for any i ∈ N and k ≥ 0, we have∥∥φ̂VECM′
ik − φVECM′

ik

∥∥ =
∥∥λ̂′iB̂kK̂R̂′ − λ′iBkK

∥∥
=
∥∥(λ̂′i − λ′iJ + λ′iJ)(B̂k − JBkJ + HBkJ)(K̂− JKR + JKR)(R̂′ −R′ + R′)− λ′iBkK

∥∥
≤
∥∥λ̂′i − λ′iJ∥∥ ∥∥HBkJJKRR′

∥∥+
∥∥λ′iJ∥∥ ∥∥B̂k − JBkJ

∥∥ ∥∥JKRR′
∥∥

+
∥∥λ′iJJBkJ

∥∥ ∥∥K̂− JKR
∥∥ ∥∥R′∥∥+

∥∥λ′iJJBkJJKR
∥∥ ∥∥R̂′ −R′

∥∥
+
∥∥λ′iJJBkJJKRR′ − λ′iBkK

∥∥+ op(ϑnT,δ) = Op

(
max

(
1√
T
,

1√
n

))
+Op(ϑnT,δ),

where we used (A81), (A82), and (A83), orthogonality of R, JJ = Ir, and the fact that R, K,
Bk, λi are all finite dimensional matrices with norm that does not depend on n or T . By (17) it
is clear that the upper bound on the rate of convergence is ϑnT,δ. This completes the proof. �

A.6 Proof of Lemma 5
Define the r × r transformation D = (β′ β′⊥)′, where β is the r × c cointegration vector of Ft,
and β⊥ is such that β′⊥β = 0r−c×r. Then, the vector process Zt = DFt, is partitioned into an
I(0) vector Z0t = β′Ft and an I(1) vector Z1t = β′⊥Ft. The vectors Z0t and Z1t are orthogonal.

Now consider the models for Ft, Z0t, and Z1t:

Ft = A1Ft−1 + wt, Z0t = Q0Ft−1 + β′wt, Z1t = Q1Ft−1 + β′⊥wt,

where Q0 is c×r and Q1 is r−c×r, and wt = Kut. Denote the ordinary least squares estimators
of the above models, when using Ft, as Â1VAR

1 , Q̂0, and Q̂1 . Then,

∥∥Q̂0 −Q0

∥∥ =

∥∥∥∥( 1

T

T∑
t=1

β′Ft−1u
′
tK
′β

)(
1

T

T∑
t=1

β′Ft−1F
′
t−1β

)−1∥∥∥∥ = Op

(
1√
T

)
. (A84)

Indeed, the first term on the rhs is Op(T−1/2) from (A38) and by independence of ut in Assumption
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4(a), while the second term is Op(1) by Lemma A5(v). Similarly,

∥∥Q̂1 −Q1

∥∥ =

∥∥∥∥( 1

T 2

T∑
t=1

β′⊥Ft−1u
′
tK
′β⊥

)(
1

T 2

T∑
t=1

β′⊥Ft−1F
′
t−1β⊥

)−1∥∥∥∥ = Op

(
1

T

)
. (A85)

Indeed, the first term on the rhs is Op(T−1) from (A38) and by independence of ut in Assumption
4(a), while the second term is Op(1) by Lemma A5(ii). Moreover,

vec
(
Â1VAR

1

)
= (Ir ⊗D′)

(
vec(Q̂0)

vec(Q̂1)

)
. (A86)

Analogous formulas to (A84)-(A86) are in Theorem 1 by Sims et al. (1990) and, by combining
them, ∥∥Â1VAR

1 −A1

∥∥ = Op

(
1√
T

)
. (A87)

Notice that of the r2 parameters in A1, cr in Q0 are estimated consistently with rate Op(T−1/2),
while (r − c)r in Q1 with rate Op(T−1).

If we now denote as Â0VAR
1 the ordinary least square estimator for the VAR when using JFt,

then Â0VAR
1 = JÂ1VAR

1 J, and from (A87)

∥∥Â0VAR
1 − JA1J

∥∥ = Op

(
1√
T

)
. (A88)

Define

M̂1L =
1

T

T∑
t=1

F̂tF̂
′
t−1, M̂LL =

1

T

T∑
t=1

F̂t−1F̂
′
t−1. (A89)

Then, we can write the VAR estimators as

ÂVAR
1 =

M̂1L

T

(
M̂LL

T

)−1

, Â0VAR
1 =

M1L

T

(
MLL

T

)−1

, (A90)

where M1L and MLL are defined as in (A89), but when using JFt.
Because of Lemma A8(i), we have∥∥∥∥M̂1L

T
− M1L

T

∥∥∥∥ = Op

(
max

(
1√
n
,

1√
T

))
,

∥∥∥∥M̂LL

T
− MLL

T

∥∥∥∥ = Op

(
max

(
1√
n
,

1√
T

))
,

thus ∥∥ÂVAR
1 − Â0VAR

1

∥∥ = Op

(
max

(
1√
n
,

1√
T

))
. (A91)

By combining (A91) with (A88)

∥∥ÂVAR
1 − JA1J

∥∥ ≤ ∥∥ÂVAR
1 − Â0VAR

1

∥∥+
∥∥Â0VAR

1 − JA1J
∥∥ = Op

(
max

(
1√
n
,

1√
T

))
, (A92)
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which completes the proof of part (i).
By noticing that, as a consquence of part (i), (A76) holds also in this case, but with the rate

given in (A92), we prove part (iii) exactly as in Lemma 4(iv). This completes the proof. �

A.7 Proof of Proposition 2
Define

B̂(L) =
[
ÂVAR(L)

]−1
= (Ir − ÂVAR

1 L)−1 =
∞∑
k=0

B̂kL
k,

such that B̂k = (ÂVAR
1 )k. Then, from Lemma 5(i), we have, for any finite k ≥ 0,

∥∥B̂k − JBkJ
∥∥ = Op

(
max

(
1√
n
,

1√
T

))
. (A93)

If instead k → ∞, then B̂k has as limit for n, T → ∞ a random variable rather than Bk (see
Theorem 3.2 in Phillips, 1998), hence

lim
k→∞

‖B̂k −Bk‖ = Op(1). (A94)

The estimated impulse response of variable i is then the q-dimensional row vector (see (24))

φ̂VAR′
i (L) = λ̂′iB̂(L)K̂R̂′, (A95)

where λ̂′i is the i-th row of Λ̂ and R̂ ≡ R̂(Λ̂, ÂVAR(L), K̂) is a consistent estimator of the matrix
R, such that, because of Lemmas 3(i) and 5(i) (see also the proof of Proposition 1),

∥∥R̂−R
∥∥ = Op

(
max

(
1√
n
,

1√
T

))
. (A96)

Notice that (A96) is true provided that we do not consider long-run restrictions as identification
schemes, since in that case R would be a function of AVAR(1) and it is not consistently estimated
because of (A94). Consistency of the estimated IRFs (A95), at each finite lag k, is then proved
exactly as in the proof of Proposition 1. �

A.8 Proof of Lemma 6
For any i = 1, . . . , n, recall that we defined xit = ai +λ′iFt + ξit so that yit = bit+ xit. The proof
of part (i) is straightforward since it amounts to using the sample mean as an estimator of the
mean of the stationary and ergodic process ∆yit.

For part (ii), define ȳi = (T +1)−1
∑T

t=0 yit and x̄i = (T +1)−1
∑T

t=0 xit, then ȳi = x̄i+ biT/2.
From least squares trend slope estimator, b̂i, in (27) we have

b̂i − bi =

∑T
t=0(t− T

2 )(yit − ȳi)∑T
t=0(t− T

2 )2
− bi =

∑T
t=0(t− T

2 )(xit − x̄i)∑T
t=0(t− T

2 )2
=

∑T
t=0 txit −

T
2

∑T
t=0 xit∑T

t=0 t
2 − T 2(T+1)

4

. (A97)
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The denominator of (A97) is O(T 3). For the numerator, consider first the case in which xit ∼ I(1),
then under Assumptions 4(a) and 4(c) of serial independence of the shocks, by Proposition 17.1
parts d and f in Hamilton (1994) we have, as T →∞,

1

T 3/2

T∑
t=0

xit = Op(1),
1

T 5/2

T∑
t=0

txit = Op(1).

When xit ∼ I(0), then, by Proposition 17.1 parts a and c in Hamilton (1994) we have, as T →∞,

1

T 1/2

T∑
t=0

xit = Op(1),
1

T 3/2

T∑
t=0

txit = Op(1).

Therefore, by multiplying and dividing (A97) by T 3 we have the result both for xit ∼ I(1) and
for xit ∼ I(0). This completes the proof. �

A.9 Proof of Lemma 7
For part (i) we can follow a reasoning similar to Lemma 2(i). The spectral density matrix of
the first difference of the common factors can be written as Σ∆F (θ) = (2π)−1C(e−iθ)C′(e−iθ)
and, since rk(C(e−iθ)) = q a.e. in [−π, π], then it has q non-zero real eigenvalues and r − q zero
eigenvalues. Notice also that we have rk(C(e−iθ)) ≤ q for any θ ∈ [−π, π]. Moreover, given
square summability of the coefficients of C(L) as a consequence of Assumption 1(a), the non-zero
eigenvalues are also finite for any θ ∈ [−π, π]. Thus, by denoting as µ∆F

j (θ) such eigenvalues,
there exist positive reals M10 and M10 such that a.e. in [−π, π]

M10 ≤ µ∆F
j (θ) ≤M10, j = 1, . . . , q. (A98)

Therefore, we can write Σ∆F (θ) = W∆F (θ)M∆F (θ)W∆F ′(θ), where W∆F (θ) is the r× q matrix
of normalized eigenvectors, i.e. such that W∆F ′(θ)W∆F (θ) = Iq for any θ ∈ [−π, π], and M∆F (θ)
is the corresponding q × q diagonal matrix of eigenvalues.

Define L(θ) = ΛW∆F (θ)(M∆F (θ))1/2 for any θ ∈ [−π, π]. Then the spectral density matrix
of the first differences of the common component is given by

Σ∆χ(θ)

n
=

1

n
ΛΣ∆F (θ)Λ′ =

1

n
ΛW∆F (θ)M∆F (θ)W∆F ′(θ)Λ′ =

L(θ)L′(θ)

n
, θ ∈ [−π, π].

Moreover, since because of (14), n−1Λ′Λ = Ir

L′(θ)L(θ)

n
= M∆F (θ), θ ∈ [−π, π]. (A99)

Therefore, a.e. in [−π, π] the non-zero dynamic eigenvalues of Σ∆χ(θ) are the same as those of
L′(θ)L(θ), and from (A99), we have for any n and a.e. in [−π, π], n−1µ∆χ

j (θ) = µ∆F
j (θ), for any

j = 1, . . . , r. Part (i) then follows from (A98).
As for part (ii), from Assumption 3(b), for any θ ∈ [−π, π], there exists a positive real M1
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such that

sup
i∈N

∣∣ďi(e−iθ)∣∣ ≤ sup
i∈N

∣∣∣∣ ∞∑
k=0

ďike
−ikθ

∣∣∣∣ ≤ sup
i∈N

∞∑
k=0

∣∣ďik∣∣ ≤M1. (A100)

Define as σij(θ) the generic (i, j)-th entry of Σ∆ξ(θ). Then, for any n ∈ N,

sup
θ∈[−π,π]

∥∥Σ∆ξ(θ)
∥∥

1
= sup

θ∈[−π,π]
max
i=1,...,n

n∑
j=1

|σij(θ)| = sup
θ∈[−π,π]

max
i=1,...,n

1

2π

n∑
j=1

∣∣ďi(e−iθ)E[εitεjt] ďj(e
iθ)
∣∣

≤ M2
1

2π
max
i=1,...,n

n∑
j=1

|E[εitεjt]| ≤
M2

1M4

2π
, (A101)

where we used (A100) and Assumption 4(e). From (A2) and (A101), we have, for any n ∈ N,

sup
θ∈[−π,π]

µ∆ξ
1 (θ) = sup

θ∈[−π,π]

∥∥Σ∆ξ(θ)
∥∥ ≤ sup

θ∈[−π,π]

∥∥Σ∆ξ(θ)
∥∥

1
≤ M2

1M4

2π
, (A102)

and part (ii) is proved by defining M11 = M2
1M4(2π)−1.

Finally, parts (iii) and (iv), are immediate consequences of Assumption 3(d), which implies
that Σ∆x(θ) = Σ∆χ(θ) + Σ∆ξ(θ), for any θ ∈ [−π, π], and of Weyl’s inequality (A3). So, for
j = 1, . . . , q, and for any n ∈ N and a.e. in [−π, π], there exist positive reals M12 and M12 such
that

µ∆x
j (θ)

n
≤
µ∆χ
j (θ)

n
+
µ∆ξ

1 (θ)

n
≤M10 + sup

θ∈[−π,π]

µ∆ξ
1 (θ)

n
≤M10 +

M11

n
= M12,

µ∆x
j (θ)

n
≥
µ∆χ
j (θ)

n
+
µ∆ξ
n (θ)

n
≥M10 + inf

θ∈[−π,π]

µ∆ξ
n (θ)

n
= M12.

because of parts (i) and (ii). This proves part (iii). When j = q + 1, using parts (i) and (ii), and
since rk(Σ∆χ(θ)) ≤ q, for any θ ∈ [−π, π], we have µ∆x

q+1(θ) ≤ µ∆χ
q+1(θ) + µ

∆ξ(θ)
1 = µ

∆ξ(θ)
1 ≤ M11,

thus proving part (iv).
Finally, for part (v) consider parts (iii) and (iv) but when θ = 0. Then, rk(Σ∆χ(0)) = τ ≤ q

which implies M10 ≤ n−1µ∆χ
τ (0) ≤ M10, but µ

∆χ
τ+1(0) = 0. Using again parts (i) and (ii) and

Weyl’s inequality (A3), prove part (v). This completes the proof. �

A.10 Proof of Proposition 3
The proof follows Proposition 2 in Hallin and Liška (2007) when fixing θ = 0, combined with
Lemma 7 and the results about spectral density estimation in ?. �
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B Data Description and Data Treatment
No. Series ID Definition Unit F. Source SA T
1 INDPRO Industrial Production Index 2007=100 M FED 1 2
2 IPBUSEQ IP: Business Equipment 2007=100 M FED 1 2
3 IPDCONGD IP: Durable Consumer Goods 2007=100 M FED 1 2
4 IPDMAT IP: Durable Materials 2007=100 M FED 1 2
5 IPNCONGD IP: Nondurable Consumer Goods 2007=100 M FED 1 2
6 IPNMAT IP: nondurable Materials 2007=100 M FED 1 2
7 CPIAUCSL CPI: All Items 1982-84=100 M BLS 1 3
8 CPIENGSL CPI: Energy 1982-84=100 M BLS 1 3
9 CPILEGSL CPI: All Items Less Energy 1982-84=100 M BLS 1 3
10 CPILFESL CPI: All Items Less Food & Energy 1982-84=100 M BLS 1 3
11 CPIUFDSL CPI: Food 1982-84=100 M BLS 1 3
12 CPIULFSL CPI: All Items Less Food 1982-84=100 M BLS 1 3
13 PPICRM PPI: Crude Materials for Further Processing 1982=100 M BLS 1 3
14 PPIENG PPI: Fuels & Related Products & Power 1982=100 M BLS 0 3
15 PPIFGS PPI: Finished Goods 1982=100 M BLS 1 3
16 PPIIDC PPI: Industrial Commodities 1982=100 M BLS 0 3
17 PPICPE PPI: Finished Goods: Capital Equipment 1982=100 M BLS 1 3
18 PPIACO PPI: All Commodities 1982=100 M BLS 0 3
19 PPIITM PPI: Intermediate Materials 1982=100 M BLS 1 3
20 AMBSL St. Louis Adjusted Monetary Base Bil. of $ M StL 1 3
21 ADJRESSL St. Louis Adjusted Reserves Bil. of $ M StL 1 3
22 CURRSL Currency Component of M1 Bil. of $ M FED 1 3
23 M1SL M1 Money Stock Bil. of $ M FED 1 3
24 M2SL M2 Money Stock Bil. of $ M FED 1 3
25 BUSLOANS Commercial and Industrial Loans Bil. of $ M FED 1 2
26 CONSUMER Consumer Loans Bil. of $ M FED 1 2
27 LOANINV Bank Credit Bil. of $ M FED 1 2
28 LOANS Loans and Leases in Bank Credit Bil. of $ M FED 1 2
29 REALLN Real Estate Loans Bil. of $ M FED 1 2
30 TOTALSL Tot. Cons. Credit Owned and Securitized Bil. of $ M FED 1 2
31 GDPC1 Gross Domestic Product Bil. of Ch. 2005$ Q BEA 1 2
32 FINSLC1 Final Sales of Domestic Product Bil. of Ch. 2005$ Q BEA 1 2
33 SLCEC1 State & Local CE & GI Bil. of Ch. 2005$ Q BEA 1 2
34 PRFIC1 Private Residential Fixed Investment Bil. of Ch. 2005$ Q BEA 1 2
35 PNFIC1 Private Nonresidential Fixed Investment Bil. of Ch. 2005$ Q BEA 1 2
36 IMPGSC1 Imports of Goods & Services Bil. of Ch. 2005$ Q BEA 1 2
37 GCEC1 Government CE & GI Bil. of Ch. 2005$ Q BEA 1 2
38 EXPGSC1 Exports of Goods & Services Bil. of Ch. 2005$ Q BEA 1 2
39 CBIC1 Change in Private Inventories Bil. of Ch. 2005$ Q BEA 1 1
40 PCNDGC96 PCE: Nondurable Goods Bil. of Ch. 2005$ Q BEA 1 2
41 PCESVC96 PCE: Services Bil. of Ch. 2005$ Q BEA 1 2
42 PCDGCC96 PCE: Durable Goods Bil. of Ch. 2005$ Q BEA 1 2
43 DGIC96 National Defense Gross Investment Bil. of Ch. 2005$ Q BEA 1 2
44 NDGIC96 Federal Nondefense Gross Investment Bil. of Ch. 2005$ Q BEA 1 2
45 DPIC96 Disposable Personal Income Bil. of Ch. 2005$ Q BEA 1 2
46 PCECTPI PPCE: Chain-type Price Index 2005=100 Q BEA 1 3
47 GPDICTPI GPDI: Chain-type Price Index 2005=100 Q BEA 1 3
48 GDPCTPI GDP: Chain-type Price Index 2005=100 Q BEA 1 3
49 HOUSTMW Housing Starts in Midwest Thous. of Units M Census 1 2
50 HOUSTNE Housing Starts in Northeast Thous. of Units M Census 1 2
51 HOUSTS Housing Starts in South Thous. of Units M Census 1 2
52 HOUSTW Housing Starts in West Thous. of Units M Census 1 2
53 PERMIT Building Permits Thous. of Units M Census 1 2
54 ULCMFG Manuf. S.: Unit Labor Cost 2005=100 Q BLS 1 2
55 COMPRMS Manuf. S.: Real Compensation Per Hour 2005=100 Q BLS 1 2
56 COMPMS Manuf. S.: Compensation Per Hour 2005=100 Q BLS 1 2
57 HOAMS Manuf. S.: Hours of All Persons 2005=100 Q BLS 1 2
58 OPHMFG Manuf. S.: Output Per Hour of All Persons 2005=100 Q BLS 1 2
59 ULCBS Business S.: Unit Labor Cost 2005=100 Q BLS 1 2
60 RCPHBS Business S.: Real Compensation Per Hour 2005=100 Q BLS 1 2
61 HCOMPBS Business S.: Compensation Per Hour 2005=100 Q BLS 1 2
62 HOABS Business S.: Hours of All Persons 2005=100 Q BLS 1 2
63 OPHPBS Business S.: Output Per Hour of All Persons 2005=100 Q BLS 1 2
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No. Series ID Definition Unit F. Source SA T
64 MPRIME Bank Prime Loan Rate % M FED 0 1
65 FEDFUNDS Effective Federal Funds Rate % M FED 0 1
66 TB3MS 3-Month T.Bill: Secondary Market Rate % M FED 0 1
67 GS1 1-Year Treasury Constant Maturity Rate % M FED 0 1
68 GS3 3-Year Treasury Constant Maturity Rate % M FED 0 1
69 GS10 10-Year Treasury Constant Maturity Rate % M FED 0 1
70 EMRATIO Civilian Employment-Population Ratio % M BLS 1 1
71 CE16OV Civilian Employment Thous. of Persons M BLS 1 2
72 UNRATE Civilian Unemployment Rate % M BLS 1 1
73 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks Thous. of Persons M BLS 1 2
74 UEMP5TO14 Civilians Unemployed for 5-14 Weeks Thous. of Persons M BLS 1 2
75 UEMP15T26 Civilians Unemployed for 15-26 Weeks Thous. of Persons M BLS 1 2
76 UEMP27OV Civilians Unemployed for 27 Weeks and Over Thous. of Persons M BLS 1 2
77 UEMPMEAN Average (Mean) Duration of Unemployment Weeks M BLS 1 2
78 UNEMPLOY Unemployed Thous. of Persons M BLS 1 2
79 DMANEMP All Employees: Durable goods Thous. of Persons M BLS 1 2
80 NDMANEMP All Employees: Nondurable goods Thous. of Persons M BLS 1 2
81 SRVPRD All Employees: Service-Providing Industries Thous. of Persons M BLS 1 2
82 USCONS All Employees: Construction Thous. of Persons M BLS 1 2
83 USEHS All Employees: Education & Health Services Thous. of Persons M BLS 1 2
84 USFIRE All Employees: Financial Activities Thous. of Persons M BLS 1 2
85 USGOOD All Employees: Goods-Producing Industries Thous. of Persons M BLS 1 2
86 USGOVT All Employees: Government Thous. of Persons M BLS 1 2
87 USINFO All Employees: Information Services Thous. of Persons M BLS 1 2
88 USLAH All Employees: Leisure & Hospitality Thous. of Persons M BLS 1 2
89 USMINE All Employees: Mining and logging Thous. of Persons M BLS 1 2
90 USPBS All Employees: Prof. & Business Services Thous. of Persons M BLS 1 2
91 USPRIV All Employees: Total Private Industries Thous. of Persons M BLS 1 2
92 USSERV All Employees: Other Services Thous. of Persons M BLS 1 2
93 USTPU All Employees: Trade, Trans. & Ut. Thous. of Persons M BLS 1 2
94 USWTRADE All Employees: Wholesale Trade Thous. of Persons M BLS 1 2
95 OILPRICE Spot Oil Price: West Texas Intermediate $ per Barrel M DJ 0 3
96 NAPMNOI ISM Manuf.: New Orders Index Index M ISM 1 1
97 NAPMPI ISM Manuf.: Production Index Index M ISM 1 1
98 NAPMEI ISM Manuf.: Employment Index Index M ISM 1 1
99 NAPMSDI ISM Manuf.: Supplier Deliveries Index Index M ISM 1 1
100 NAPMII ISM Manuf.: Inventories Index Index M ISM 1 1
101 SP500 S&P 500 Stock Price Index Index D S&P 0 2

Abbreviations
Source Freq. Trans. SA
BLS=U.S. Department of Labor: Bureau of Labor Statistics Q = Quarterly 1 = None 0 = no
BEA=U.S. Department of Commerce: Bureau of Economic Analysis M = Monthly 2 = log 1 = yes
ISM = Institute for Supply Management D = Daily 3 = ∆ log
Census=U.S. Department of Commerce: Census Bureau
FED=Board of Governors of the Federal Reserve System
StL=Federal Reserve Bank of St. Louis
Note: All monthly and daily series are transformed into quarterly observation by simple averages
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